Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766009

RESUMO

In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells. In this study, both MM- and ovariectomy (OVX)-induced osteoporotic mouse models were used to compare the effects of recombinant mouse CST6 (rmCst6) and ZA on preventing bone loss. µCT showed that rmCst6 and ZA had similar effects on improving percent bone volume, and inhibited differentiation of non-adherent bone marrow cells into mature osteoclasts. Single-cell RNA sequencing showed that rmCst6 and not ZA treatment reduced bone marrow macrophage percentage in the MM mouse model compared to controls. Protein and mRNA arrays showed that both rmCst6 and ZA significantly inhibit OVX-induced expression of inflammatory cytokines. For OVX mice, ERα protein expression in bone was brought to sham surgery level by only rmCst6 treatments. rmCst6 significantly increased mRNA and protein levels of ERα and significantly increased total intracellular estrogen concentrations for ex vivo osteoclast precursor cell cultures. Based on these results, we conclude that CST6 improves MM or OVX bone loss models by increasing the expression of estrogen receptors as well as the intracellular estrogen concentration in osteoclast precursors, inhibiting their maturation.

2.
J Nutr Biochem ; 127: 109601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367948

RESUMO

Phenolic acids, such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA), can be produced from microbiome digestion of polyphenols. Previously it was found that HA and 3-3-PPA facilitate bone formation and suppress bone resorption. However, the mechanism of action by which HA and 3-3-PPA protect bone from degeneration is currently unknown. In this report, we present that HA and 3-3-PPA suppression of bone resorption is able to ameliorate bone loss in an ovariectomy (OVX) osteopenic mouse model though not to the extent of Zoledronic acid (ZA). HA and 3-3-PPA treatments were shown to significantly decrease bone marrow adipocyte-like cell formation and inhibited gene expression of key adipogenesis regulator peroxisome proliferator activated receptor gamma (PPARγ) and lipoprotein lipase (Lpl) in bone from OVX mice. In addition, ChIP experiments showed that the association between PPARγ and Lpl promoter region in preadipocyte-like cells was significantly suppressed following HA or 3-3-PPA treatment. Contrasting HA and 3-3-PPA, ZA significantly increased TRAP activity in the area close to growth plate and significantly suppressed bone cell proliferation. These data suggest that phenolics acids such as HA or 3-3-PPA may prevent bone degeneration after OVX through suppression of inflammatory milieu in the bone.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Hidroxibenzoatos , Fenóis , Propionatos , Feminino , Camundongos , Animais , Humanos , Adipogenia , Medula Óssea , PPAR gama/genética , PPAR gama/metabolismo , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/prevenção & controle , Ácido Zoledrônico , Esteroides , Ovariectomia
3.
FASEB J ; 37(7): e23019, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272906

RESUMO

Osteoclasts derived from hematopoietic stem cells control bone resorption. Identifying novel molecules that can epigenetically regulate osteoclastogenesis is important for developing novel treatments for osteoporosis and other disorders associated with bone deterioration and promoting healthy bone formation. The polycomb group (PcG) protein enhancer of zeste homolog 2 (Ezh2), a histone lysine methyltransferase, is associated with epigenetic regulation of numerous cellular processes, but its involvement in bone cell development and homeostasis is not yet clear. Here, LysM-Cre mice were crossed with Ezh2flox/flox mice to delete Ezh2 in myeloid cell lineage mature macrophages. Conditional knockout of Ezh2 (CKO) in myeloid cell line resulted in significant increases in postnatal bone growth in the first 6 months of life for both male and female mice. For female mice, optimal bone mass was seen for mice with Ezh2 deleted in both chromosomes in a pair (f/f Cre+ ; CKO). For male mice, optimal bone mass was found after deletion of Ezh2 from just one chromosome (f/- Cre+ ) with no difference in bone phenotype between f/- Cre+ and CKO male mice. In addition to the gender-specific difference in bone phenotype, Ezh2 CKO mice had significantly less macrophages (CD11b+) present in the bone marrow compared with control mice as well as significantly more mature osteoblasts and bone formation biomarkers present (P1NP, osteocalcin). Inflammatory array for protein lysed from bone tissue revealed deletion of Ezh2 decreased inflammatory milieu in both male and female mice compared with controls. Unexpectedly, myeloid cell deletion of Ezh2 also increased the number of mature osteoblast present in the bone. Deletion of Ezh2 also led to an increase in gene expression of osteoclast-suppressive genes IRF8, MafB, and Arg1 due to a decrease in the presence of the suppressive H3K27me3 epigenetic mark. These findings suggest that manipulation of Ezh2 expression may be a viable strategy to combat bone resorptive disorders such as osteoporosis or arthritis.


Assuntos
Reabsorção Óssea , Proteína Potenciadora do Homólogo 2 de Zeste , Osteoporose , Animais , Feminino , Masculino , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Camundongos Knockout , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/metabolismo
4.
Am J Clin Nutr ; 117(6): 1211-1218, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028556

RESUMO

BACKGROUND: Early infant feeding can affect skeletal development. Most children are fed with breast milk, dairy-based infant formula, or soy-based infant formula during the first year of life. The National Health and Nutrition Examination Survey 2003-2010 reports that 12% of the US infants consume soy-based infant formula. Despite potential effects of soy-associated isoflavones on skeletal development, studies investigating bone metabolism and structural and functional bone indices in children are lacking. OBJECTIVE: The aim of this observational study was to investigate early effects of soy-based infant formula (SF group) intake on bone metabolism and structure during the first 6 y of life comparing with those of infants fed with breast milk (BF group) and dairy-based infant formula (MF group). METHODS: A total of 433 healthy infants were followed up from 3 mo to 6 y of age. Children's skeletal development was assessed using dual-energy X-ray absorptiometry (DXA; N = 433) and peripheral quantitative computed tomography (pQCT; n = 78). The urinary biomarkers of bone metabolism (N-terminal telopeptide of type I collagen [NTx] and osteocalcin) were evaluated using immunoassays at 6, 24, 60, and 72 mo. RESULTS: No statistically significant group differences were observed in bone mineral density (BMD) between the BF, MF, and SF groups, assessed using DXA or pQCT. At 6 y of age, children in the SF group showed significantly greater whole-body bone mineral content measured using DXA than those in the MF group. Six-month-old boys in the SF group demonstrated significantly greater levels of NTx than those in the MF group and significantly greater osteocalcin levels than those in the BF group. CONCLUSIONS: Together, these data suggest that although infants at age 6 mo in the SF group showed some enhanced bone metabolism compared with those in the BF and MF groups, as indicated by the urinary biomarkers, no differences in bone metabolism or BMD were noted between ages 2 and 6 y. This trial was registered at clinicaltrials.gov as NCT00616395.


Assuntos
Leite Humano , Leite , Lactente , Masculino , Feminino , Humanos , Criança , Animais , Leite/metabolismo , Osteocalcina/metabolismo , Inquéritos Nutricionais , Fórmulas Infantis , Alimentos Formulados , Aleitamento Materno
5.
Epigenetics ; 17(13): 2209-2222, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35950595

RESUMO

Studies from both humans and animal models indicated that maternal chronic poor-quality diet, especially a high fat diet (HFD), is significantly associated with reduced bone density and childhood fractures in offspring. When previously studied in a rat model, our data suggested that maternal HFD changes epigenetic marks such as DNA methylation and histone modifications to control osteoblast metabolism. In mouse embryonic and postnatal offspring bone samples, a ChIP-sequencing (ChIP-Seq)-based genome-wide method was used to locate the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, Ezh2) and expressive histone mark H3K27ac (p300/CBP mediated) throughout the genome. Using isolated mouse embryonic cells from foetal calvaria (osteoblast-like cells), H3K27me3 ChIP-Seq showed that 147 gene bodies and 26 gene promoters in HFD embryotic samples had a greater than twofold increase in H3K27me peaks compared to controls. Among the HFD samples, Pthlh and Col2a1 that are important genes playing roles during chondro- and osteogenesis had significantly enriched levels of H3K27me3. Their decreased mRNA expression was confirmed by real-time PCR and standard ChIP analysis, indicating a strong association with Ezh2 mediated H3K27me3 epigenetic changes. Using embryonic calvaria osteoblastic cells and offspring bone samples, H3K27ac ChIP-Seq analysis showed that osteoblast inhibitor genes Tnfaip3 and Twist1 had significantly enriched peaks of H3K27ac in HFD samples compared to controls. Their increased gene expression and association with H3K27ac were also confirmed by real-time PCR and standard ChIP analysis. These findings indicate that chronic maternal HFD changes histone trimethylation and acetylation epigenetic marks to regulate expression of genes controlling osteoblastogenesis.


Assuntos
Dieta Hiperlipídica , Histonas , Humanos , Camundongos , Animais , Ratos , Criança , Histonas/genética , Histonas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metilação de DNA , Epigênese Genética , Acetilação
6.
Commun Biol ; 5(1): 583, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701603

RESUMO

Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.


Assuntos
Desenvolvimento Ósseo , NADPH Oxidase 4 , Osteogênese , Animais , Desenvolvimento Ósseo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Osteogênese/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Bone ; 161: 116422, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489706

RESUMO

Sex steroid deficiency plays critical roles in the pathophysiology of bone as the result of uncertain bone remodeling, i.e., increased bone resorption with equivocal bone formation. We have previously shown that GPR109A, a G protein coupled receptor, controls osteoclastogenesis and bone resorption, where global GPR109A deletion decreased osteoclast bone resorption and increased bone mass. Here, we used global GPR109A gene deletion, ovariectomized (OVX) and orchidectomized (ORX) mouse models to probe the role of GPR109A in gonadectomy-induced bone loss in female and male mice. Six months old GPR109A-/- mice and their wild type littermates were allocated to Sham or gonadectomized groups for six weeks. Using densitometric micro-CT confirmed by peripheral quantitative CT (pQCT) scans on tibia and spine, and three-point bending test on femur ex vivo, we found the bone volume, trabecular number, as well as bone mineral density and content in both trabecular and cortical sites were significantly decreased in wild type OVX and ORX compared with respective Sham groups. While bone mass in both male and female GPR109A-/- Sham groups were significantly higher compared with their respective wild type Sham groups, global GPR109A gene deletion ameliorated gonadectomy-induced bone loss. In GPR109A-/- females, most of bone mass and strength parameters measured by micro-CT, pQCT and three-point bending test were not different between Sham and OVX groups. In wild type but not in GPR109-/- mice, bone remodeling marker measurements indicated that both bone resorption (Cathepsin K) and bone formation (osteocalcin) markers were increased in gonadectomized mice compared to sham, with the exception of bone specific ALP, which was decreased in gonadectomized mice. Expression of bone resorption markers (Cathepsin K) were significantly lower, but ß-catenin expression was higher in GPR109A-/- mice compared with their wild type littermates. Collectively, these data indicate that global GPR109A deletion ameliorates gonadectomy-induced bone loss through suppression of bone resorption.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Receptores Acoplados a Proteínas G/genética , Animais , Densidade Óssea , Reabsorção Óssea/genética , Catepsina K , Feminino , Deleção de Genes , Gônadas/cirurgia , Humanos , Masculino , Camundongos , Ovariectomia , Microtomografia por Raio-X
8.
JBMR Plus ; 5(7): e10508, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258504

RESUMO

Mechanical stresses associated with physical activity (PA) have beneficial effects on increasing BMD and improving bone quality. However, a high-fat diet (HFD) and obesity tend to have negative effects on bone, by increasing bone marrow adiposity leading to increased excretion of proinflammatory cytokines, which activate RANKL-induced bone resorption. In the current study, whether short-term increased PA via access to voluntary wheel running during early life has persistent and protective effects on HFD-induced bone resorption was investigated. Sixty 4-week-old male C57BL6/J mice were divided into two groups postweaning: without or with PA (access to voluntary running wheel 7-8 km/day) for 4 weeks. After 4 weeks with or without PA, mice were further subdivided into control diet or HFD groups for 8 weeks, and then all animals were switched back to control diet for an additional 4 weeks. Mice from the HFD groups were significantly heavier and obese; however, after 4 weeks of additional control diet their body weights returned to levels of mice on continuous control diet. Using µ-CT and confirmed by pQCT of tibias and spines ex vivo, it was determined that bone volume and trabecular BMD were significantly increased with PA in control diet animals compared with sedentary animals without access to wheels, and such anabolic effects of PA on bone were sustained after ceasing PA in adult mice. Eight weeks of a HFD deteriorated bone development in mice. Unexpectedly, early-life PA did not prevent persistent effects of HFD on deteriorating bone quality; in fact, it exacerbated a HFD-induced inflammation, osteoclastogenesis, and trabecular bone loss in adult mice. In accordance with these data, signal transduction studies revealed that a HFD-induced Ezh2, DNA methyltransferase 3a, and nuclear factor of activated T-cells 1 expression were amplified in nonadherent hematopoietic cells. In conclusion, short-term increased PA in early life is capable of increasing bone mass; however, it alters the HFD-induced bone marrow hematopoietic cell-differentiation program to exacerbate increased bone resorption if PA is halted. © 2021 Arkansas Children's Nutrition Center. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Commun Biol ; 4(1): 53, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420329

RESUMO

The G protein-coupled receptor 109 A (GPR109A) is robustly expressed in osteoclastic precursor macrophages. Previous studies suggested that GPR109A mediates effects of diet-derived phenolic acids such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on promoting bone formation. However, the role of GPR109A in metabolic bone homeostasis and osteoclast differentiation has not been investigated. Using densitometric, bone histologic and molecular signaling analytic methods, we uncovered that bone mass and strength were significantly higher in tibia and spine of standard rodent diet weaned 4-week-old and 6-month-old GPR109A gene deletion (GPR109A-/-) mice, compared to their wild type controls. Osteoclast numbers in bone and in ex vivo bone marrow cell cultures were significantly decreased in GPR109A-/- mice compared to wild type controls. In accordance with these data, CTX-1 in bone marrow plasma and gene expression of bone resorption markers (TNFα, TRAP, Cathepsin K) were significantly decreased in GPR109A-/- mice, while on the other hand, P1NP was increased in serum from both male and female GPR109A-/- mice compared to their respective controls. GPR109A deletion led to suppressed Wnt/ß-catenin signaling in osteoclast precursors to inhibit osteoclast differentiation and activity. Indeed, HA and 3-3-PPA substantially inhibited RANKL-induced GPR109A expression and Wnt/ß-catenin signaling in osteoclast precursors and osteoclast differentiation. Resultantly, HA significantly inhibited bone resorption and increased bone mass in wild type mice, but had no additional effects on bone in GPR109A-/- mice compared with their respective untreated control mice. These results suggest an important role for GPR109A during osteoclast differentiation and bone resorption mediating effects of HA and 3-3-PPA on inhibiting bone resorption during skeletal development.


Assuntos
Reabsorção Óssea/prevenção & controle , Hipuratos/farmacologia , Osteogênese/efeitos dos fármacos , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Microbioma Gastrointestinal , Hipuratos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilpropionatos/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Via de Sinalização Wnt
10.
JBMR Plus ; 4(8): e10376, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32803108

RESUMO

Estrogen deficiency and aging play critical roles in the pathophysiology of bone as a result of increased oxidative stress. It has been suggested that prevention of NADPH oxidase- (Nox-) dependent accumulation of ROS may be an approach to potentially minimize bone loss caused by these conditions. Using ovariectomized (OVX) and Nox4 gene-deletion mouse models, we investigated the role of Nox4 in OVX-induced bone loss and osteoblast senescence signaling. Six-month-old WT C57Bl6 mice were allocated to a sham control group, OVX, and OVX plus E2 treatment group for 8 weeks. Decreased bone mass including BMD and BMC were found in the OVX group compared with the sham control (p < 0.05); E2 treatment completely reversed OVX-induced bone loss. Interestingly, the prevention of OVX-induced bone loss by E2 was associated with the elimination of increased senescence signaling in bone osteoblastic cells from the OVX group. E2 blunted OVX-induced p53 and p21 overexpression, but not p16 and Nox4 in bone. In addition, 8- and 11-month-old Nox4 KO female mice were OVX for 8 weeks. Significant bone loss and increased bone osteoblastic cell senescence signaling occurred not only in Nox4 KO OVX mice compared with sham-operated animals, but also in 11-month-old Nox4 KO sham mice compared with 8-month-old Nox4 KO sham mice (p < 0.05). These data suggest that Nox4-mediated ROS in bone osteoblastic cells may be dispensable for sex steroid deficiency-induced bone loss and senescence. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

11.
FASEB J ; 34(2): 2511-2523, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908011

RESUMO

Nutritional status during intrauterine and/or early postnatal life has substantial influence on adult offspring health. Along these lines, there is a growing body of evidence illustrating that high fat diet (HFD)-induced maternal obesity can regulate fetal bone development. Thus, we investigated the effects of maternal obesity on both fetal skeletal development and mechanisms linking maternal obesity to osteoblast differentiation in offspring. Embryonic osteogenic calvarial cells (EOCCs) were isolated from fetuses at gestational day 18.5 (E18.5) of HFD-induced obese rat dams. We observed impaired differentiation of EOCCs to mature osteoblasts from HFD obese dams. ChIP-seq-based genome-wide localization of the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, enhancer of zeste homologue 2 [Ezh2]) showed that this phenotype was associated with increased enrichment of H3K27me3 on the gene of SATB2, a critical transcription factor required for osteoblast differentiation. Knockdown of Ezh2 in EOCCs and ST2 cells increased SATB2 expression; while Ezh2 overexpression in EOCCs and ST2 cells decreased SATB2 expression. These data were consistent with experimental results showing strong association between H3K27me3, Ezh2, and SATB2 in cells from rats and humans. We have further presented that SATB2 mRNA and protein expression were increased in bones, and increased trabecular bone mass from pre-osteoblast specific Ezh2 deletion (Ezh2flox/flox Osx-Cre+ cko) mice compared with those from control Cre+ mice. These findings indicate that maternal HFD-induced obesity may be associated with decreasing fetal pre-osteoblastic cell differentiation, under epigenetic control of SATB2 expression via Ezh2-dependent mechanisms.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Feto , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Desenvolvimento Musculoesquelético/efeitos dos fármacos , Obesidade Materna , Osteoblastos , Fatores de Transcrição/biossíntese , Animais , Linhagem Celular , Gorduras na Dieta/farmacologia , Feminino , Feto/embriologia , Feto/patologia , Humanos , Obesidade Materna/induzido quimicamente , Obesidade Materna/metabolismo , Obesidade Materna/patologia , Osteoblastos/patologia , Gravidez , Ratos
12.
J Cell Physiol ; 235(1): 599-610, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271661

RESUMO

Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet-fed animals compared with those treated with serum from standard casein diet-fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3-4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.


Assuntos
Hipuratos/farmacologia , Osteogênese/efeitos dos fármacos , Fenóis/farmacologia , Propionatos/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Animais , Células da Medula Óssea/citologia , Reabsorção Óssea/tratamento farmacológico , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteogênese/fisiologia , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
JBMR Plus ; 3(9): e10201, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31667457

RESUMO

Phenolic acids (PAs) are metabolites derived from polyphenolic compounds found in fruits and vegetables resulting from the actions of gut bacteria. Previously, we reported that the levels of seven individual PAs were found to be at least 10 times higher in the serum of rats fed a blueberry (BB)-containing diet compared to those fed a control diet. We have characterized the effects of one such BB-associated serum PA, 3-(3-hydroxyphenyl)-propionic acid (PPA), on senescence signaling and promotion of mesenchymal stem cell differentiation toward osteoblasts, while suppressing adipogenesis in the stem cells. To better understand the mechanistic actions of PPA on bone formation in vivo, we administered four doses of PPA (0.1, 0.5, 1, and 5 mg/kg/day; daily i.p.) to 1-month-old female C57BL6/J mice for 30 days. We did not observe significant effects of PPA on cortical bone; however, there were significantly higher bone volume and trabecular thickness and increased osteoblastic cell number, but decreased osteoclastic cell number in PPA-treated groups compared to controls. These morphological and cellular outcomes of bone were reflected in changes of bone formation markers in serum and bone marrow plasma. PPA treatment reduced senescence signaling as evaluated by senescence-associated ß-galactosidase activity, PPARγ, p53, and p21 expression in bone. In conclusion, PPA is capable of altering the mesenchymal stem cell differentiation program and bone cell senescence. This raises the possibility that BB-rich diets promote bone growth through increasing systemic PAs, a question that merits additional investigation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

14.
Nutrients ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717265

RESUMO

The antioxidant and anti-inflammatory properties of blueberries improve vascular function and insulin sensitivity. However, the bioavailability of the active compounds in blueberries is largely dependent on the gut microbiota, which may themselves be altered by blueberry components. The objective of the current study was to explore a possible sex-dependent modulation of the gut microbiota following supplementation with blueberries in adult mice. Eight-week-old C57BL/6J mice (n = 7⁻10/group) were provided with control or blueberry-containing diets (5% freeze-dried powder) for 4 weeks. Body weight, composition, and food intake were measured weekly. Genomic DNA was isolated from the cecal contents for 16S rRNA sequencing. Blueberry feeding decreased a-diversity (operational taxonomical unit  abundance) and altered b-diversity (p < 0.05). At the phylum level, the Firmicutes to Bacteroidetes ratio was significantly lower in the blueberry-fed groups (p < 0.001), along with increased Tenericutes and decreased Deferribacteres. At the genus level, blueberry feeding led to sexually-dimorphic differences, which were associated with predicted metabolic pathways. Pathways such as fatty acid and lipid metabolism were significantly different and demonstrated a stronger association with microbes in the male. To summarize, blueberry supplementation led to sexually-dimorphic global changes in the gut microbiome, which could possibly contribute to physiological changes in mice.


Assuntos
Mirtilos Azuis (Planta) , Dieta/estatística & dados numéricos , Frutas , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Peso Corporal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais
15.
J Endocrinol ; 239(1): 33­47, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307152

RESUMO

Intrauterine or early postnatal high-fat diet (HFD) has substantial influences on adult offspring health; however, studies of HFD-induced maternal obesity on regulation of adult offspring bone formation are sparse. Here, we investigated the effects of HFD-induced maternal obesity on both fetal and adult offspring skeletal development. We found that HFD-induced maternal obesity significantly decreased fetal skeletal development, but enhanced fetal osteoblastic cell senescence signaling and significantly increased the expression of inflammatory factors of the senescence-associated secretory phenotype (SASP) in osteo-progenitors. It was found that p300/CBP activation led to H3K27 acetylation to increase the expression of senescence-related genes and PPARγ in embryonic mouse osteogenic calvarial cells from HFD obese dams. These results were recapitulated in human umbilical cord mesenchymal stem cells (UC MSCs) isolated from offspring of pregnant obese and lean mothers following delivery. Regardless of postnatal HFD challenge, adult offspring from HFD obese dams showed significantly suppressed bone formation. Such early involution of bone formation of adult offspring from HFD obese dams may at least in part due to histone acetylation, i.e., epigenetic regulation of genes involved in cell senescence signaling in pre-osteoblasts from prenatal development. These findings indicate fetal pre-osteoblastic cell senescence signaling is epigenetically regulated by maternal obesity to repress bone formation in adult offspring in rodents and suggest that at least some of these effects may also manifest in humans.


Assuntos
Desenvolvimento Ósseo , Histona Acetiltransferases/metabolismo , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Estudos de Casos e Controles , Senescência Celular , Dieta Hiperlipídica , Desenvolvimento Embrionário , Feminino , Humanos , Camundongos Endogâmicos C57BL , Gravidez
16.
FASEB J ; 31(1): 376-387, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733448

RESUMO

Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases; however, evidence for an association between early-life dietary factors and bone health in adults is limited. Soy protein isolate (SPI) may be one such dietary factor that promotes bone accretion during early life with persistent effects into adulthood. In the present study, we fed postnatal day (PND) 24 weanling female rats an SPI diet for 30 d [short-term SPI (ST-SPI)], and on PND 55, we switched SPI diet to control Cas diet until age 6 mo. Rats then underwent either ovariectomy (OVX) or sham surgery and thereafter either continued to be fed an SPI diet or control diet for 1 or 3 wk. We showed significantly increased bone mass in 30-d SPI-fed young rats compared with controls. OVX-induced bone loss was associated with increased osteoblastic cell senescence. On the one hand, both long-term SPI (continuous SPI diet throughout life) and ST-SPI diet only in early life protected against 1 wk post-OVX-associated bone loss. On the other hand, long-term SPI diet diminished the loss of total, trabecular, and cortical bone mineral density, whereas ST-SPI diet only reduced cortical bone mineral density loss 3 wk post-OVX. Persistent and protective effects of SPI diets on OVX-induced bone loss were associated with down-regulation of the caveolin-1/p53-mediated senescence pathway in bone. We recapitulated these results in cell cultures. Reprogramming of cellular senescence signaling by SPI-associated isoflavones in osteoblastic cells may explain the persistent effects of SPI on bone. These results suggest that OVX-induced bone loss, in part, is a result of increased osteoblastic cell senescence, and that ST-SPI diet early in life has modest but persistent programming effects on bone formation to prevent OVX-induced bone loss in adult female rats.-Chen, J.-R., Lazarenko, O. P., Blackburn, M. L., Shankar, K. Dietary factors during early life program bone formation in female rats.


Assuntos
Ração Animal/análise , Desenvolvimento Ósseo/fisiologia , Caveolina 1/metabolismo , Proteínas de Soja/farmacologia , Animais , Densidade Óssea/fisiologia , Caveolina 1/genética , Senescência Celular , Dieta , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Proteínas de Soja/administração & dosagem
17.
Endocrinology ; 157(11): 4172-4183, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27653035

RESUMO

Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases, presumably via epigenetic mechanisms. However, evidence on the impact of gestational events on regulation of embryonic bone cell fate is sparse. We investigated the effects of maternal obesity on fetal osteoblast development in both rodents and humans. Female rats were fed control or an obesogenic high-fat diet (HFD) for 12 weeks and mated with male rats fed control diets, and respective maternal diets were continued during pregnancy. Embryonic rat osteogenic calvarial cells (EOCCs) were taken from gestational day 18.5 fetuses from control and HFD dams. EOCCs from HFD obese dams showed increases in p53/p21-mediated cell senescence signaling but decreased glucose metabolism. Decreased aerobic glycolysis in HFD-EOCCs was associated with decreased osteoblastic cell differentiation and proliferation. Umbilical cord human mesenchymal stem cells (MSCs) from 24 pregnant women (12 obese and 12 lean) along with placentas were collected upon delivery. The umbilical cord MSCs of obese mothers displayed less potential toward osteoblastogenesis and more towards adipogenesis. Human MSCs and placenta from obese mothers also exhibited increased cell senescence signaling, whereas MSCs showed decreased glucose metabolism and insulin resistance. Finally, we showed that overexpression of p53 linked increased cell senescence signaling and decreased glucose metabolism in fetal osteo-progenitors from obese rats and humans. These findings suggest programming of fetal preosteoblastic cell senescence signaling and glucose metabolism by maternal obesity.


Assuntos
Obesidade/fisiopatologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Obesidade/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Crânio/citologia , Tiazolidinedionas/farmacologia , Magreza/metabolismo , Magreza/fisiopatologia
18.
J Biol Chem ; 290(23): 14692-704, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25922068

RESUMO

Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.


Assuntos
Envelhecimento , Desenvolvimento Ósseo , Inflamação/imunologia , Glicoproteínas de Membrana/imunologia , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Osso e Ossos/citologia , Osso e Ossos/imunologia , Osso e Ossos/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Deleção de Genes , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , Osteoblastos/citologia , Osteoblastos/imunologia , Crânio/citologia
19.
Endocrinology ; 156(2): 475-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490147

RESUMO

Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, the underlying mechanism by which high-fat, energy-dense diets affect bone-forming cell phenotypes is poorly understood. Here, we show that male weanling rats fed a diet containing 45% fat and 0.5% cholesterol made with casein (HF-Cas) for 6 weeks displayed lower bone mineral density and strength compared with those of AIN-93G-fed dietary controls. Substitution of casein with soy protein isolate (SPI) in the high-fat diet (HF-SPI) prevented these effects. The bone-sparing effects of SPI were associated with prevention of HF-Cas-induced osteoblast senescence pathways through suppression of the p53/p21 signaling pathways. HF-Cas-fed rats had increased caveolin-1 and down-regulated Sirt1, leading to activations of peroxisome proliferator-activated receptor γ (PPARγ) and p53/p21, whereas rats fed HF-SPI suppressed caveolin-1 and activated Sirt1 to deacetylate PPARγ and p53 in bone. Treatment of osteoblastic cells with nonesterified free fatty acid (NEFA) increased cell senescence signaling pathways. Isoflavones significantly blocked activations of senescence-associated ß-galactosidase and PPARγ/p53/p21 by NEFA. Finally, replicative senescent osteoblastic cells and bone marrow mesenchymal ST2 cells exhibited behavior similar to that of cells treated with NEFA and in vivo bone cells in rats fed the HF-Cas diet. These results suggest that (1) high concentrations of NEFA occurring with HF intake are mediators of osteoblast cell senescence leading to impairment of bone development and acquisition and (2) the molecular mechanisms underlying the SPI-protective effects involve isoflavone-induced inhibition of osteoblastic cell senescence to prevent HF-induced bone impairments.


Assuntos
Caveolina 1/metabolismo , Senescência Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Osteoblastos/efeitos dos fármacos , Proteínas de Soja/farmacologia , Animais , Ácidos Graxos não Esterificados/sangue , Isoflavonas/sangue , Masculino , Camundongos , Osteoblastos/metabolismo , PPAR gama/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley
20.
FASEB J ; 28(7): 3134-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719353

RESUMO

It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality are due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet uncharacterized nonestrogenic pathway. In our study, SPI-fed rat serum inhibited the osteoblastic cell senescence pathway. This effect was accompanied by stimulation of cell differentiation, proliferation, and significant restoration of replicative senescent bone marrow mesenchymal ST2 cells (passaged 30 times). These effects were reproduced in bone from 5-wk-old intact and 10-wk-old ovariectomized female rats fed SPI diets. Caveolin-1 and p53 expression was decreased in bone in SPI-fed, but not in 17ß-estradiol (E2)-treated rats. In cell culture studies, membranous caveolin-1 and nuclear p53 expression was greater in replicative senescent ST2 cell cultures than in earlier passaged cells. SPI-fed rat serum significantly down-regulated both caveolin-1 and p53 in senescent and nonsenescent cells. Replicative senescent ST2 cells exhibited a strong association among caveolin-1, p53, and mouse double minute 2 homologue (mdm2), which was inhibited by SPI-fed rat serum. Overexpression of caveolin-1 in ST2 cells resulted in increased expression of p53 and p21, whereas, knockdown of caveolin-1 using shRNA led to increases in mdm2 and eliminated SPI-fed rat serum's effects on p53 and p21 expression. In contrast, manipulation of caveolin-1 expression did not affect the actions of E2 or isoflavones on p53 expression in either ST2 or OB6 cells. These results suggest that caveolin-1 is a mediator of nonestrogenic SPI effects on bone cells.-Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J. J., Chen, J.-R. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways.


Assuntos
Caveolina 1/genética , Senescência Celular/genética , Regulação para Baixo/genética , Osteoblastos/metabolismo , Transdução de Sinais/genética , Proteínas de Soja/metabolismo , Animais , Osso e Ossos/metabolismo , Caveolina 1/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA