Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179684

RESUMO

Most foundational work on the evolution and migration of plant species relies on genomic data from contemporary samples. Ancient plant samples can give us access to allele sequences and distributions on the landscape dating back to the mid Holocene or earlier (Gugerli et al., 2005). Nuclear DNA from ancient wood, however, has been mostly inaccessible until now. In a From the Cover article in this issue of Molecular Ecology, Wagner et al. (2023) present the first resequenced nuclear genomes from ancient oak wood, including two samples dated to the 15th century and one that dates to more than 3500 years ago. These ancient tree genomes open the possibility for investigating species adaptation, migration, divergence, and hybridisation in the deep past. They pave the way for what we hope will be a new era in the use of paleogenomics to study Holocene tree histories.


Assuntos
Quercus , Árvores , Árvores/genética , Genômica , Paleontologia , Madeira , Ecologia , Quercus/genética
2.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708394

RESUMO

Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.


Assuntos
Quercus , Quercus/genética , Filogenia , Haplótipos , Genômica , Cromossomos
3.
Front Plant Sci ; 12: 683043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040627

RESUMO

Glacial refugia of alpine and subnival biota have been intensively studied in the European Alps but the fate of forests and their understory species in that area remains largely unclear. In order to fill this gap, we aimed at disentangling the spatiotemporal diversification of disjunctly distributed black hellebore Helleborus niger (Ranunculaceae). We applied a set of phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) data and plastid DNA sequences to a range-wide sampling of populations. These analyses were supplemented with species distribution models generated for the present and the Last Glacial Maximum (LGM). We used exploratory analyses to delimit genomically coherent groups and then employed demographic modeling to reconstruct the history of these groups. We uncovered a deep split between two major genetic groups with western and eastern distribution within the Southern Limestone Alps, likely reflecting divergent evolution since the mid-Pleistocene in two glacial refugia situated along the unglaciated southern margin of the Alps. Long-term presence in the Southern Limestone Alps is also supported by high numbers of private alleles, elevated levels of nucleotide diversity and the species' modeled distribution at the LGM. The deep genetic divergence, however, is not reflected in leaf shape variation, suggesting that the morphological discrimination of genetically divergent entities within H. niger is questionable. At a shallower level, populations from the Northern Limestone Alps are differentiated from those in the Southern Limestone Alps in both RADseq and plastid DNA data sets, reflecting the North-South disjunction within the Eastern Alps. The underlying split was dated to ca. 0.1 mya, which is well before the LGM. In the same line, explicit tests of demographic models consistently rejected the hypothesis that the partial distribution area in the Northern Limestone Alps is the result of postglacial colonization. Taken together, our results strongly support that forest understory species such as H. niger have survived the LGM in refugia situated along the southern, but also along the northern or northeastern periphery of the Alps. Being a slow migrator, the species has likely survived repeated glacial-interglacial circles in distributional stasis while the composition of the tree canopy changed in the meanwhile.

4.
Appl Plant Sci ; 7(10): e11296, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667024

RESUMO

PREMISE: Alkanna tinctoria (Boraginaceae) is an important medicinal herb with its main distribution across the Mediterranean region. To reveal its genetic variation and population structure, microsatellite markers were developed and validated in four Greek populations. METHODS AND RESULTS: RNA-Seq data of the related species Arnebia euchroma and Echium plantagineum were assembled and mined to identify conserved ortholog sets containing simple sequence repeat motifs. Fifty potential loci were identified and then tested on A. tinctoria, of which 17 loci were polymorphic. The number of alleles ranged from one to nine, and the levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and 0.000 to 0.820, respectively. Most of these loci could be successfully amplified in eight other species of Boraginaceae (Alkanna graeca, A. hellenica, A. sfikasiana, Echium vulgare, E. plantagineum, Lithospermum officinale, Borago officinalis, and Anchusa officinalis). CONCLUSIONS: This study provides the first set of microsatellite loci for studying the genetic variation and population structure of A. tinctoria and shows their potential usefulness in other Boraginaceae species.

5.
Biol Invasions ; 21(11): 3249-3267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31929722

RESUMO

Genetic admixture and plasticity along with propagule pressure, large seed dispersal distances and fast adaptation support successful establishment and spread of introduced species outside their native range. Consequently, introductions may display climatic niche shifts in the introduced range. Douglas-fir, a controversial forest and ornamental conifer represented by two ecologically different and hybridising varieties, was transferred multiple times outside the native range in North America. Here, we compare climatic and genetic patterns of 38 native populations from North America with six old Pseudotsuga menziesii populations with natural regeneration in the introduced range in Central Europe. Following variety and geographic origin assessment of introduced populations, genotypic and climatic data were examined for signatures of inter-varietal gene flow, reduced genetic diversity, presence of fine-scale spatial genetic structure (SGS), dispersal patterns, and climate similarities between native and introduced range. In the introduced range, dominating coastal variety originated from a restricted area in the US, whereas the interior variety, with limited presence in the European sites, displayed wider geographic origin. Variety hybrids with contributing coastal, but not the interior parent were identified. Differences in genetic diversity between both ranges, but also among the parent and their respective offspring populations in Europe were not found. Old populations in general lacked any SGS, whereas natural regeneration revealed different patterns of SGS. Distances of propagule dispersal ranged between 2.5 and 92 m. The climate of the studied European introduced range was most similar to the climate of the coastal variety from the western Cascade range from which the majority of the analysed coastal European Douglas-fir, but not the European interior variety, was assigned to originate. The results we present here shed not only light on dynamics of invasive species in the introduced range in general, but also allow for refinement of climatic niche modeling when using lower than species level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...