Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605526

RESUMO

Intermolecular interactions of protein-protein complexes play a principal role in the process of discovering new substances used in the diagnosis and treatment of many diseases. Among such complexes of proteins, we have to mention antibodies; they interact with specific antigens of two genera of single-stranded RNA viruses belonging to the family Filoviridae-Ebolavirus and Marburgvirus; both cause rare but fatal viral hemorrhagic fever in Africa, with pandemic potential. In this research, we conduct studies aimed at the design and evaluation of antibodies targeting the filovirus glycoprotein precursor GP-1,2 to develop potential targets for the pan-filovirus easy-to-use rapid diagnostic tests. The in silico research using the available 3D structure of the natural antibody-antigen complex was carried out to determine the stability of individual protein segments in the process of its formation and maintenance. The computed free binding energy of the complex and its decomposition for all amino acids allowed us to define the residues that play an essential role in the structure and indicated the spots where potential antibodies can be improved. Following that, the study involved targeting six epitopes of the filovirus GP1,2 with two polyclonal antibodies (pABs) and 14 monoclonal antibodies (mABs). The evaluation conducted using Enzyme Immunoassays tested 62 different sandwich combinations of monoclonal antibodies (mAbs), identifying 10 combinations that successfully captured the recombinant GP1,2 (rGP). Among these combinations, the sandwich option (3G2G12* - (rGP) - 2D8F11) exhibited the highest propensity for capturing the rGP antigen.

2.
Curr Issues Mol Biol ; 46(3): 2713-2740, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534787

RESUMO

HER2-positive breast cancer is one of the most prevalent forms of cancer among women worldwide. Generally, the molecular characteristics of this breast cancer include activation of human epidermal growth factor receptor-2 (HER2) and hormone receptor activation. HER2-positive is associated with a higher death rate, which led to the development of a monoclonal antibody called trastuzumab, specifically targeting HER2. The success rate of HER2-positive breast cancer treatment has been increased; however, drug resistance remains a challenge. This fact motivated us to explore the underlying molecular mechanisms of trastuzumab resistance. For this purpose, a two-fold approach was taken by considering well-known breast cancer cell lines SKBR3 and BT474. In the first fold, trastuzumab treatment doses were optimized separately for both cell lines. This was done based on the proliferation rate of cells in response to a wide variety of medication dosages. Thereafter, each cell line was cultivated with a steady dosage of herceptin for several months. During this period, six time points were selected for further in vitro analysis, ranging from the untreated cell line at the beginning to a fully resistant cell line at the end of the experiment. In the second fold, nucleic acids were extracted for further high throughput-based microarray experiments of gene and microRNA expression. Such expression data were further analyzed in order to infer the molecular mechanisms involved in the underlying development of trastuzumab resistance. In the list of differentially expressed genes and miRNAs, multiple genes (e.g., BIRC5, E2F1, TFRC, and USP1) and miRNAs (e.g., hsa miR 574 3p, hsa miR 4530, and hsa miR 197 3p) responsible for trastuzumab resistance were found. Downstream analysis showed that TFRC, E2F1, and USP1 were also targeted by hsa-miR-8485. Moreover, it indicated that miR-4701-5p was highly expressed as compared to TFRC in the SKBR3 cell line. These results unveil key genes and miRNAs as molecular regulators for trastuzumab resistance.

3.
Front Oncol ; 13: 1259314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053658

RESUMO

Introduction: Malignant mesothelioma is a rare and aggressive form of cancer. Despite improvements in cancer treatment, there are still no curative treatment modalities for advanced stage of the malignancy. The aim of this study was to evaluate the anti-tumor efficacy of a novel combinatorial therapy combining AdV5/3-D24-ICOSL-CD40L, an oncolytic vector, with an anti-PD-1 monoclonal antibody. Methods: The efficacy of the vector was confirmed in vitro in three mesothelioma cell lines - H226, Mero-82, and MSTO-211H, and subsequently the antineoplastic properties in combination with anti-PD-1 was evaluated in xenograft H226 mesothelioma BALB/c and humanized NSG mouse models. Results and discussion: Anticancer efficacy was attributed to reduced tumour volume and increased infiltration of tumour infiltrating lymphocytes, including activated cytotoxic T-cells (GrB+CD8+). Additionally, a correlation between tumour volume and activated CD8+ tumour infiltrating lymphocytes was observed. These findings were confirmed by transcriptomic analysis carried out on resected human tumour tissue, which also revealed upregulation of CD83 and CRTAM, as well as several chemokines (CXCL3, CXCL9, CXCL11) in the tumour microenvironment. Furthermore, according to observations, the combinatorial therapy had the strongest effect on reducing mesothelin and MUC16 levels. Gene set enrichment analysis suggested that the combinatorial therapy induced changes to the expression of genes belonging to the "adaptive immune response" gene ontology category. Combinatorial therapy with oncolytic adenovirus with checkpoint inhibitors may improve anticancer efficacy and survival by targeted cancer cell destruction and triggering of immunogenic cell death. Obtained results support further assessment of the AdV5/3-D24-ICOSL-CD40L in combination with checkpoint inhibitors as a novel therapeutic perspective for mesothelioma treatment.

4.
BioTechnologia (Pozn) ; 104(4): 403-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213479

RESUMO

New prophylactic vaccine platforms are imperative to combat respiratory infections. The efficacy of T and B memory cell-mediated protection, generated through the adenoviral vector, was tested to assess the effectiveness of the new adenoviral-based platforms for infectious diseases. A combination of adenovirus AdV1 (adjuvant), armed with costimulatory ligands (ICOSL and CD40L), and rRBD (antigen: recombinant nonglycosylated spike protein rRBD) was used to promote the differentiation of T and B lymphocytes. Adenovirus AdV2 (adjuvant), without ligands, in combination with rRBD, served as a control. In vitro T-cell responses to the AdV1+rRBD combination revealed that CD8+ platform-specific T-cells increased (37.2 ± 0.7% vs. 23.1 ± 2.1%), and T-cells acted against SARS-CoV-2 via CD8+TEMRA (50.0 ± 1.3% vs. 36.0 ± 3.2%). Memory B cells were induced after treatment with either AdV1+rRBD (84.1 ± 0.8% vs. 82.3 ± 0.4%) or rRBD (94.6 ± 0.3% vs. 82.3 ± 0.4%). Class-switching from IgM and IgD to isotype IgG following induction with rRBD+Ab was observed. RNA-seq profiling identified gene expression patterns related to T helper cell differentiation that protect against pathogens. The analysis determined signaling pathways controlling the induction of protective immunity, including the MAPK cascade, adipocytokine, cAMP, TNF, and Toll-like receptor signaling pathway. The AdV1+rRBD formulation induced IL-6, IL-8, and TNF. RNA-seq of the VERO E6 cell line showed differences in the apoptosis gene expression stimulated with the platforms vs. mock. In conclusion, AdV1+rRBD effectively generates T and B memory cell-mediated protection, presenting promising results in producing CD8+ platform-specific T cells and isotype-switched IgG memory B cells. The platform induces protective immunity by controlling the Th1, Th2, and Th17 cell differentiation gene expression patterns. Further studies are required to confirm its effectiveness.

5.
Methods ; 203: 498-510, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167916

RESUMO

For the last two years, the COVID-19 pandemic has continued to bring consternation on most of the world. According to recent WHO estimates, there have been more than 5.6 million deaths worldwide. The virus continues to evolve all over the world, thus requiring both vigilance and the necessity to find and develop a variety of therapeutic treatments, including the identification of specific antiviral drugs. Multiple studies have confirmed that SARS-CoV-2 utilizes its membrane-bound spike protein to recognize human angiotensin-converting enzyme 2 (ACE2). Thus, preventing spike-ACE2 interactions is a potentially viable strategy for COVID-19 treatment as it would block the virus from binding and entering into a host cell. This work aims to identify potential drugs using an in silico approach. Molecular docking was carried out on both approved drugs and substances previously tested in vivo. This step was followed by a more detailed analysis of selected ligands by molecular dynamics simulations to identify the best molecules that thwart the ability of the virus to interact with the ACE2 receptor. Because the SARS-CoV-2 virus evolves rapidly due to a plethora of immunocompromised hosts, the compounds were tested against five different known lineages. As a result, we could identify substances that work well on individual lineages and those showing broader efficacy. The most promising candidates among the currently used drugs were zafirlukast and simeprevir with an average binding affinity of -22 kcal/mol for spike proteins originating from various lineages. The first compound is a leukotriene receptor antagonist that is used to treat asthma, while the latter is a protease inhibitor used for hepatitis C treatment. From among the in vivo tested substances that concurrently exhibit promising free energy of binding and ADME parameters (indicating a possible oral administration) we selected the compound BDBM50136234. In conclusion, these molecules are worth exploring further by in vitro and in vivo studies against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias
6.
Cancer Immunol Res ; 10(2): 228-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853030

RESUMO

Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.


Assuntos
Antioxidantes , Neoplasias da Mama , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Feminino , Peróxido de Hidrogênio/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais , Camundongos , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Microambiente Tumoral
7.
Commun Biol ; 4(1): 1384, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893694

RESUMO

CD71+ erythroid cells (CECs) have been recently recognized in both neonates and cancer patients as potent immunoregulatory cells. Here, we show that in mice early-stage CECs expand in anemia, have high levels of arginase 2 (ARG2) and reactive oxygen species (ROS). In the spleens of anemic mice, CECs expansion-induced L-arginine depletion suppresses T-cell responses. In humans with anemia, CECs expand and express ARG1 and ARG2 that suppress T-cells IFN-γ production. Moreover, bone marrow CECs from healthy human donors suppress T-cells proliferation. CECs differentiated from peripheral blood mononuclear cells potently suppress T-cell activation, proliferation, and IFN-γ production in an ARG- and ROS-dependent manner. These effects are the most prominent for early-stage CECs (CD71highCD235adim cells). The suppressive properties disappear during erythroid differentiation as more differentiated CECs and mature erythrocytes lack significant immunoregulatory properties. Our studies provide a novel insight into the role of CECs in the immune response regulation.


Assuntos
Células Eritroides/imunologia , Tolerância Imunológica , Linfócitos T/imunologia , Adulto , Animais , Antígenos CD/metabolismo , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Transferrina/metabolismo , Adulto Jovem
8.
Sci Rep ; 11(1): 10300, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986365

RESUMO

Several TBC1D24 variants are causally involved in the development of profound, prelingual hearing loss (HL) and different epilepsy syndromes inherited in an autosomal recessive manner. Only two TBC1D24 pathogenic variants have been linked with postlingual progressive autosomal dominant HL (ADHL). To determine the role of TBC1D24 in the development of ADHL and to characterize the TBC1D24-related ADHL, clinical exome sequencing or targeted multigene (n = 237) panel were performed for probands (n = 102) from multigenerational ADHL families. In four families, TBC1D24-related HL was found based on the identification of three novel, likely pathogenic (c.553G>A, p.Asp185Asn; c.1460A>T, p. His487Leu or c.1461C>G, p.His487Gln) and one known (c.533C>T, p.Ser178Leu) TBC1D24 variant. Functional consequences of these variants were characterized by analyzing the proposed homology models of the human TBC1D24 protein. Variants not only in the TBC (p.Ser178Leu, p.Asp185Asn) but also in the TLDc domain (p.His487Gln, p.His487Leu) are involved in ADHL development, the latter two mutations probably affecting interactions between the domains. Clinically, progressive HL involving mainly mid and high frequencies was observed in the patients (n = 29). The progression of HL was calculated by constructing age-related typical audiograms. TBC1D24-related ADHL originates from the cochlear component of the auditory system, becomes apparent usually in the second decade of life and accounts for approximately 4% of ADHL cases. Given the high genetic heterogeneity of ADHL, TBC1D24 emerges as an important contributor to this type of HL.


Assuntos
Proteínas Ativadoras de GTPase/genética , Genes Dominantes , Perda Auditiva/genética , Desenvolvimento da Linguagem , Substituição de Aminoácidos , Progressão da Doença , Perda Auditiva/patologia , Humanos , Mutação
9.
Methods ; 181-182: 35-51, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32645447

RESUMO

In recent years, high-throughput techniques have revealed considerable structural organization of the human genome with diverse regions of the chromatin interacting with each other in the form of loops. Some of these loops are quite complex and may encompass regions comprised of many interacting chain segments around a central locus. Popular techniques for extracting this information are chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture (Hi-C). Here, we introduce a physics-based method to predict the three-dimensional structure of chromatin from population-averaged ChIA-PET data. The approach uses experimentally-validated data from human B-lymphoblastoid cells to generate 2D meta-structures of chromatin using a dynamic programming algorithm that explores the chromatin free energy landscape. By generating both optimal and suboptimal meta-structures we can calculate both the free energy and additionally the relative thermodynamic probability. A 3D structure prediction program with applied restraints then can be used to generate the tertiary structures. The main advantage of this approach for population-averaged experimental data is that it provides a way to distinguish between the principal and the spurious contacts. This study also finds that euchromatin appear to have rather precisely regulated 2D meta-structures compared to heterochromatin. The program source-code is available at https://github.com/plewczynski/looper.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação Molecular , Análise de Sequência de DNA/métodos , Algoritmos , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Entropia , Eucromatina/química , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Software
11.
Semin Cell Dev Biol ; 90: 114-127, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30096365

RESUMO

The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of µm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.


Assuntos
Fator de Ligação a CCCTC/genética , Genoma Humano/genética , Fator de Ligação a CCCTC/química , DNA/química , DNA/genética , Humanos
12.
Oncogene ; 38(15): 2860-2875, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552384

RESUMO

Metastasis to distant organs is a major cause for solid cancer mortality, and the acquisition of migratory and invasive phenotype is a key factor in initiation of malignancy. In this study we investigated the contribution of Mixed-Lineage Kinase 4 (MLK4) to aggressive phenotype of breast cancer cells. Our TCGA cancer genomic data analysis revealed that amplification or mRNA upregulation of MLK4 occurred in 23% of invasive breast carcinoma cases. To find the association between MLK4 expression and the specific subtype of breast cancer, we performed a transcriptomic analysis of multiple datasets, which showed that MLK4 is highly expressed in triple-negative breast cancer compared to other molecular subtypes. Depletion of MLK4 in cell lines with high MLK4 expression impaired proliferation and anchorage-dependent colony formation. Moreover, silencing of MLK4 expression significantly reduced the migratory potential and invasiveness of breast cancer cells as well as the number of spheroids formed in 3D cultures. These in vitro findings translate into slower rate of tumor growth in mice upon MLK4 knock-down. Furthermore, we established that MLK4 activates NF-κB signaling and promotes a mesenchymal phenotype in breast cancer cells. Immunohistochemical staining of samples obtained from breast cancer patients revealed a strong positive correlation between high expression of MLK4 and metastatic potential of tumors, which was predominantly observed in TNBC subgroup. Taken together, our results show that high expression of MLK4 promotes migratory and invasive phenotype of breast cancer and may represent a novel target for anticancer treatment.


Assuntos
Movimento Celular/ética , MAP Quinase Quinase Quinases/genética , Invasividade Neoplásica/genética , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , NF-kappa B/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/genética , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Haematologica ; 103(11): 1843-1852, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30002127

RESUMO

A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Metacrilatos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
14.
J Hum Genet ; 63(4): 473-485, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410512

RESUMO

Most of the 19 mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) involved in mitochondrial protein synthesis are already linked to specific entities, one of the exceptions being PARS2 mutations for which pathogenic significance is not finally validated. The aim of the study was to characterize the PARS2- related phenotype.Three siblings with biallelic PARS2 mutations presented from birth with infantile spasms, secondary microcephaly, and similar facial dysmorphy. Mental development was deeply impaired with speech absence and no eye contact. A dilated cardiomyopathy and multiorgan failure developed in childhood at the terminal stage, together with mitochondrial dysfunction triggered by valproate administration.Brain MRI showed progressive volume loss of the frontal lobes, both cortical and subcortical, with widening of the cortical sulci and frontal horns of the lateral ventricles. Hypoplasia of the corpus callosum and progressive demyelination were additional findings. Similar brain features were seen in three already reported PARS2 patients and seemed specific for this defect when compared with other mt-aaRSs defects (DARS2, EARS2, IARS2, and RARS2).Striking resemblance of the phenotype and Alpers-like brain MRI changes with predominance of frontal cerebral volume loss (FCVL-AS) in six patients from three families of different ethnicity with PARS2 mutations, justifies to distinguish the condition as a new disease entity.


Assuntos
Alelos , Aminoacil-tRNA Sintetases/genética , Estudos de Associação Genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Fenótipo , Aminoacil-tRNA Sintetases/química , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Fácies , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Sequenciamento do Exoma
15.
Brief Funct Genomics ; 17(6): 415-427, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-29253080

RESUMO

Hemagglutinin (HA) is a transmembrane protein of the influenza A virus and a key component in its life cycle. The protein allows the virus to enter a host cell by recognizing specific glycans attached to transmembrane proteins of the host, which leads to viral endocytosis. In recent years, significant progress has been made in understanding the structural relationship between changes in the HA receptor-binding site (RBS) and the sialylated glycans that bind them. Several mutations were identified in the HA RBS that allows the virus to change host tropism. Their impact on binding the analogs of human and avian receptors was determined with X-ray crystallography. In this article, we provide a short overview of the HA protein structure and briefly discuss the adaptive mutations introduced to different HA subtypes.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Sítios de Ligação , Humanos , Mutação/genética , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica
16.
Brief Funct Genomics ; 17(6): 402-414, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-29040388

RESUMO

In one more years, we will 'celebrate' an exact centenary of the Spanish flu pandemic. With the rapid evolution of the influenza virus, the possibility of novel pandemic remains ever a concern. This review covers our current knowledge of the influenza A virus: on the role of RNA in translation, replication, what is known of the expressed proteins and the protein products generated from alternative splicing, and on the role of base pairing in RNA structure. We highlight the main events associated with viral entry into the cell, the transcription and replication process, an export of the viral genetic material from the nucleus and the final release of the virus. We discuss the observed potential roles of RNA secondary structure (the RNA base-pairing arrangement) and RNA/RNA interactions in this scheme.


Assuntos
Vírus da Influenza A/metabolismo , Conformação de Ácido Nucleico , RNA Viral/química , Ribonucleoproteínas/metabolismo , Genoma Viral , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia
17.
J Hepatol ; 67(5): 1026-1030, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28716744

RESUMO

BACKGROUND & AIMS: Macro-aspartate aminotransferase (macro-AST) manifests as a persistent elevation of AST levels, because of association of the protein with immunoglobulins in the circulation. Macro-AST is a rare, benign condition without a previously confirmed genetic basis. METHODS: Whole exome sequencing (WES)-based screening was performed on 32 participants with suspected familial macro-AST, while validation of variants was performed on an extended cohort of 92 probands and 1,644 healthy controls using Taqman genotyping. RESULTS: A missense variant (p.Gln208Glu, rs374966349) in glutamate oxaloacetate transaminase 1 (GOT1) was found, as a putative causal variant predisposing to familial macro-AST. The GOT1 p.Gln208Glu mutation was detected in 50 (54.3%) of 92 probands from 20 of 29 (69%) families, while its prevalence in healthy controls was only 0.18%. In silico analysis demonstrated that the amino acid at this position is not conserved among different species and that, functionally, a negatively charged glutamate on the GOT1 surface could strongly anchor serum immunoglobulins. CONCLUSIONS: Our data highlight that testing for the p.Gln208Glu genetic variant may be useful in diagnosis of macro-AST. LAY SUMMARY: Higher than normal levels of aspartate aminotransferase (AST) in the bloodstream may be a sign of a health problem. Individuals with macro-AST have elevated blood AST levels, without ongoing disease and often undergo unnecessary medical tests before the diagnosis of macro-AST is established. We found a genetic variant in the GOT1 gene associated with macro-AST. Genetic testing for this variant may aid diagnosis of macro-AST.


Assuntos
Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferases , Erros Inatos do Metabolismo , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/genética , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único
18.
J Transl Med ; 15(1): 25, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178980

RESUMO

BACKGROUND: Hearing loss and ovarian dysfunction are key features of Perrault syndrome (PRLTS) but the clinical and pathophysiological features of hearing impairment in PRLTS individuals have not been addressed. Mutations in one of five different genes HSD17B4, HARS2, LARS2, CLPP or TWNK (previous symbol C10orf2) cause the autosomal recessive disorder but they are found only in about half of the patients. METHODS: We report on two siblings with a clinical picture resembling a severe, neurological type of PRLTS. For an exhaustive characterisation of the phenotype neuroimaging with volumetric measurements and objective measures of cochlear hair cell and auditory nerve function (otoacustic emissions and auditory brainstem responses) were used. Whole exome sequencing was applied to identify the genetic cause of the disorder. Co-segregation of the detected mutations with the phenotype was confirmed by Sanger sequencing. In silico analysis including 3D protein structure modelling was used to predict the deleterious effects of the detected variants on protein function. RESULTS: We found two rare biallelic mutations in TWNK, encoding Twinkle, an essential mitochondrial helicase. Mutation c.1196A>G (p.Asn399Ser) recurred for the first time in a patient with PRLTS and the second mutation c.1802G>A (p.Arg601Gln) was novel for the disorder. In both patients neuroimaging studies showed diminished cervical enlargement of the spinal cord and for the first time in PRLTS partial atrophy of the vestibulocochlear nerves and decreased grey and increased white matter volumes of the cerebellum. Morphological changes in the auditory nerves, their desynchronized activity and partial cochlear dysfunction underlay the complex mechanism of hearing impairment in the patients. CONCLUSIONS: Our study unveils novel features on the phenotypic landscape of PRLTS and provides further evidence that the newly identified for PRLTS TWNK gene is involved in its pathogenesis.


Assuntos
Audiometria de Tons Puros , DNA Helicases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Sistema Nervoso/patologia , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , DNA Helicases/química , Demografia , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas Mitocondriais/química , Mutação/genética , Linhagem , Alinhamento de Sequência , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-27694207

RESUMO

The influenza virus type A (IVA) is an important pathogen which is able to cause annual epidemics and even pandemics. This fact is the consequence of the antigenic shifts and drifts capabilities of IVA, caused by the high mutation rate and the reassortment capabilities of the virus. The hemagglutinin (HA) protein constitutes the main IVA antigen and has a crucial role in the infection mechanism, being responsible for the recognition of host-specific sialic acid derivatives. Despite the relative abundance of HA sequence and serological studies, comparative structure-based analysis of HA are less investigated. The 3DFlu database contains well annotated HA representatives: 1192 models and 263 crystallographic structures. The relations between these proteins are defined using different metrics and are visualized as a network in the provided web interface. Moreover structural and sequence comparison of the proteins can be explored. Metadata information (e.g. protein identifier, IVA strain, year and location of infection) can enhance the exploration of the presented data. With our database researchers gain a useful tool for the exploration of high quality HA models, viewing and comparing changes in the HA viral subtypes at several information levels (sequence, structure, ESP). The complete and integrated view of those relations might be useful to determine the efficiency of transmission, pathogenicity and for the investigation of evolutionary tendencies of the influenza virus.Database URL: http://nucleus3d.cent.uw.edu.pl/influenza.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Modelos Moleculares , Análise de Sequência de Proteína/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Metadados , Domínios Proteicos
20.
Proc Natl Acad Sci U S A ; 113(29): E4190-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402735

RESUMO

The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.


Assuntos
Proteínas Arqueais/química , Proteína com Valosina/química , Proteínas Arqueais/genética , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Thermoplasma/enzimologia , Thermoplasma/genética , Proteína com Valosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...