Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688014

RESUMO

The lifelong relationship between the Hawaiian bobtail squid Euprymna scolopes and its microbial symbiont Vibrio fischeri represents a simplified model system for studying microbiome establishment and maintenance. The bacteria colonize a dedicated symbiotic light organ in the squid, from which bacterial luminescence camouflages the host in a process termed counterillumination. The squid host hatches without its symbionts, which must be acquired from the ocean amidst a diversity of nonbeneficial bacteria, such that precise molecular communication is required for initiation of the specific relationship. Therefore it is likely there are specialized metabolites used in the light organ microenvironment to modulate these processes. To identify small molecules that may influence the establishment of this symbiosis, we used imaging mass spectrometry to analyze metabolite production in V. fischeri with altered biofilm production, which correlates directly to colonization capability in its host. "Biofilm-up" and "biofilm-down" mutants were compared to a wild-type strain, and ions that were more abundantly produced by the biofilm-up mutant were detected. Using a combination of structural elucidation and synthetic chemistry, one such signal was determined to be a diketopiperazine, cyclo(d-histidyl-l-proline). This diketopiperazine modulated luminescence in V. fischeri and, using imaging mass spectrometry, was directly detected in the light organ of the colonized host. This work highlights the continued need for untargeted discovery efforts in host-microbe interactions and showcases the benefits of the squid-Vibrio system for identification and characterization of small molecules that modulate microbiome behaviors.IMPORTANCE The complexity of animal microbiomes presents challenges to defining signaling molecules within the microbial consortium and between the microbes and the host. By focusing on the binary symbiosis between Vibrio fischeri and Euprymna scolopes, we have combined genetic analysis with direct imaging to define and study small molecules in the intact symbiosis. We have detected and characterized a diketopiperazine produced by strong biofilm-forming V. fischeri strains that was detectable in the host symbiotic organ, and which influences bacterial luminescence. Biofilm formation and luminescence are critical for initiation and maintenance of the association, respectively, suggesting that the compound may link early and later development stages, providing further evidence that multiple small molecules are important in establishing these beneficial relationships.


Assuntos
Aliivibrio fischeri/metabolismo , Decapodiformes/microbiologia , Interações entre Hospedeiro e Microrganismos , Simbiose , Aliivibrio fischeri/química , Aliivibrio fischeri/genética , Animais , Biofilmes/crescimento & desenvolvimento , Dicetopiperazinas/metabolismo , Luminescência , Espectrometria de Massas , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Transdução de Sinais
2.
ACS Med Chem Lett ; 11(4): 521-527, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292559

RESUMO

The oxidative stress response, gated by the protein-protein interaction of KEAP1 and NRF2, has garnered significant interest in the past decade. Misregulation in this pathway has been implicated in disease states such as multiple sclerosis, rheumatoid arthritis, and diabetic chronic wounds. Many of the known activators of NRF2 are electrophilic in nature and may operate through several biological pathways rather than solely through the activation of the oxidative stress response. Recently, our lab has reported a nonelectrophilic, monoacidic, naphthalene-based NRF2 activator which exhibited good potency in vitro. Herein, we report a detailed structure-activity relationship of naphthalene-based NRF2 activators, an X-ray crystal structure of our monoacidic KEAP1 inhibitor, and identification of an underexplored area of the NRF2 binding pocket of KEAP1.

3.
RSC Med Chem ; 11(1): 18-29, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479602

RESUMO

Understanding and minimizing oxidative metabolism of aromatic compounds is a key hurdle in lead optimization. Metabolic processes not only clear compounds from the body, but they can also transform parent compounds into reactive metabolites. One particularly useful strategy when addressing metabolically labile or oxidation-prone structures is scaffold-hopping. Replacement of an aromatic system with a more electron-deficient ring system can often increase robustness towards cytochrome P450-mediated oxidation while conserving the structural requirements of the pharmacophore. The most common example of this substitution strategy, replacement of a phenyl ring with a pyridyl substituent, is prevalent throughout the literature; however scaffold-hopping encompasses a much wider scope of heterocycle replacement. This review will showcase recent examples where different scaffold-hopping approaches were used to reduce metabolic clearance or block the formation of reactive metabolites. Additionally, we will highlight considerations that should be made to garner the most benefit from a scaffold-hopping strategy for lead optimization.

4.
J Med Chem ; 63(12): 6547-6560, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31682434

RESUMO

Pharmacological activation of NRF2 (nuclear factor erythroid 2-related factor 2) arises from blocking the interaction of NRF2 with its negative regulator, KEAP1 (Kelch-like ECH-associated protein 1). We previously reported an isoquinoline-based NRF2 activator, but this compound showed negative logD7.4 and a -2 charge at physiological pH, which may have limited its membrane permeability. In this work, we report potent, metabolically stable analogs that result from replacing a carboxymethyl group at the 4-position with a fluoroalkyl group.


Assuntos
Descoberta de Drogas , Isoquinolinas/química , Isoquinolinas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Estabilidade de Medicamentos , Humanos , Ligação Proteica
5.
Mol Cell Endocrinol ; 493: 110471, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31163202

RESUMO

The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.


Assuntos
Peptídeos/farmacologia , Receptores de Esteroides/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Receptores de Esteroides/química , Bibliotecas de Moléculas Pequenas/química
6.
J Med Chem ; 61(17): 8029-8047, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30122040

RESUMO

Activators of nuclear factor-erythroid 2-related factor 2 (NRF2) could lead to promising therapeutics for prevention and treatment of oxidative stress and inflammatory disorders. Ubiquitination and subsequent degradation of the transcription factor NRF2 is mediated by Kelch-like ECH-associated protein-1 (KEAP1). Inhibition of the KEAP1/NRF2 interaction with small molecules leads to NRF2 activation. Previously, we and others described naphthalene-based NRF2 activators, but the 1,4-diaminonaphthalene scaffold may not represent a drug-like scaffold. Paying particular attention to aqueous solubility, metabolic stability, potency, and mutagenicity, we modified a previously known, naphthalene-based nonelectrophilic NRF2 activator to give a series of non-naphthalene and heterocyclic scaffolds. We found that, compared to previously reported naphthalene-based compounds, a 1,4-isoquinoline scaffold provides a better mutagenic profile without sacrificing potency, stability, or solubility.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Isoquinolinas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Naftalenos/química , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Células Cultivadas , Humanos , Isoquinolinas/química , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mutagênese , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
7.
Chemistry ; 22(47): 16779-16782, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27661456

RESUMO

The synthesis of densely functionalized N-heterocycles is an ongoing challenge in chemical synthesis. Herein, we report an efficient method for the construction of pyrrolidine and piperidine scaffolds using a palladium-catalyzed carboamination of alkylidenecyclopropanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...