Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(2): 402-416, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435524

RESUMO

l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (ΔF/F = 15 to 30 in vitro), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an ex vivo preparation of Drosophila brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.

2.
Nat Commun ; 14(1): 6598, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891202

RESUMO

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Camundongos , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Células Cultivadas , Imagem Óptica , Mamíferos
3.
Nat Chem ; 15(9): 1285-1295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37308709

RESUMO

The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.


Assuntos
Compostos de Sulfidrila , Isomerismo , Bases de Dados de Proteínas
4.
Cell Rep ; 42(1): 111899, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586409

RESUMO

Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress.


Assuntos
Mitocôndrias , Oxirredutases , Oxirredutases/metabolismo , Mitocôndrias/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Estresse Oxidativo
5.
NPJ Breast Cancer ; 8(1): 89, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906259

RESUMO

This clinical study explored the associations between the intestinal microbiota, chemotherapy toxicity, and treatment response in postmenopausal oestrogen receptor positive breast cancer patients.Oestrogen receptor positive postmenopausal breast cancer patients were prospectively enroled in a multicentre cohort study and treated with 4 cycles of (neo)adjuvant adriamycin, cyclophosphamide (AC) followed by 4 cycles of docetaxel (D). Patients collected a faecal sample and completed a questionnaire before treatment, during AC, during D, and after completing AC-D. Chemotherapy toxicity and tumour response were determined. Intestinal microbiota was analysed by amplicon sequencing of the 16 S rRNA V4 gene-region. In total, 44 patients, including 18 neoadjuvant patients, were included, and 153 faecal samples were collected before AC-D (n = 44), during AC (n = 43), during D (n = 29), and after AC-D treatment (n = 37), 28 participants provided all four samples. In the whole group, observed species richness reduced during treatment (p = 0.042). The abundance of Proteobacteria, unclassified Enterobacterales, Lactobacillus, Ruminococcaceae NK4A214 group, Marvinbryantia, Christensenellaceae R7 group, and Ruminococcaceae UCG-005 changed significantly over time. Patients with any grade diarrhoea during docetaxel treatment had a significantly lower observed species richness compared to patients without diarrhoea. In the small group neoadjuvant treated patients, pathologic response was unrelated to baseline intestinal microbiota richness, diversity and composition. While the baseline microbiota was not predictive for pathologic response in a rather small group of neoadjuvant treated patients in our study, subsequent shifts in microbial richness, as well as the abundance of specific bacterial taxa, were observed during AC-D treatment in the whole group and the neoadjuvant group.

6.
Gut Microbes ; 14(1): 2083905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695620

RESUMO

Detrimental consequences of antibiotic treatment may include long-lasting disruption of the gut microbiota. Previous studies found no negative effects of antibiotics on metabolic health, although individualized responses were observed. Here, we aimed to investigate the subject-specific response to vancomycin use in tissue-specific insulin sensitivity by stratifying individuals based on the presence of antibiotic resistance genes (ARGs) or opportunistic pathogens (OPs) in the baseline fecal microbiota. Quantitative Polymerase Chain Reaction (qPCR) was used to detect ARGs and OPs in DNA isolated from fecal samples of 56 males with overweight/obesity (Body Mass Index: 25-35 kg/m2) and impaired glucose metabolism (fasting plasma glucose ≥5.6 mmol/L and/or 2-hour glucose 7.8-11.1 mmol/L). A two-step hyperinsulinemic-euglycemic clamp was performed to determine tissue-specific insulin sensitivity. Abdominal subcutaneous adipose tissue (AT) gene expression was assessed using Affymetrix microarray. Gut microbial composition was determined using the Human Intestinal Tract Chip (HITChip) microarray. At baseline, the vancomycin resistance gene vanB was present in 60% of our population. In individuals that were vanB-negative at baseline, AT insulin sensitivity (insulin-mediated suppression of plasma free fatty acids) improved during vancomycin use, while it decreased among vanB-positive individuals (% change post versus baseline: 14.1 ± 5.6 vs. -6.7 ± 7.5% (p = .042)). The vancomycin-induced increase in AT insulin sensitivity was accompanied by downregulation of inflammatory pathways and enrichment of extracellular matrix remodeling pathways in AT. In the vanB-positive group, well-known vanB-carrying bacteria, Enterococcus and Streptococcus, expanded in the gut microbiome. In conclusion, microbiome composition and adipose tissue biology were differentially affected by vancomycin treatment based on fecal vanB carriage.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Tecido Adiposo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Resistência à Insulina/genética , Masculino , Vancomicina/farmacologia
7.
Clin Colorectal Cancer ; 21(2): e87-e97, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34801414

RESUMO

BACKGROUND: Previous pre-clinical research has indicated that the intestinal microbiota can potentiate anti-tumour efficacy of capecitabine and that capecitabine treatment impacts intestinal microbiota composition and diversity. Using a longitudinal design, this study explores the associations between the intestinal microbiota and treatment response in patients with metastatic colorectal cancer (mCRC) during capecitabine treatment. PATIENTS AND METHODS: Patients with mCRC treated with capecitabine were prospectively enrolled in a multicentre cohort study. Patients collected a faecal sample and completed a questionnaire before, during, and after three cycles of capecitabine. Several clinical characteristics, including tumour response, toxicity and antibiotic use were recorded. Intestinal microbiota were analysed by amplicon sequencing of the 16S rRNA V4 gene-region. RESULTS: Thirty-three patients were included. After three cycles of capecitabine, six patients (18%) achieved a partial response, 25 (76%) showed stable disease, and one (3%) experienced progressive disease. Of the 90 faecal samples were collected. Microbial diversity (α-diversity), community structure (ß-diversity), and bacterial abundance on phylum and genus level were not significantly different between responders and non-responders and were not significantly affected by three cycles of capecitabine. CONCLUSION: This is the first clinical study with longitudinal intestinal microbiota sampling in mCRC patients that explores the role of the intestinal microbiota during treatment with capecitabine. Intestinal microbiota composition and diversity before, during, and after three cycles of capecitabine were not associated with response in this study population. Capecitabine did not induce significant changes in the microbiota composition and diversity during the treatment period. Individual effects of antibiotics during capecitabine treatment were observed.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Antibacterianos , Capecitabina/uso terapêutico , Estudos de Coortes , Neoplasias Colorretais/tratamento farmacológico , Humanos , RNA Ribossômico 16S/genética
8.
Cancers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944820

RESUMO

BACKGROUND: Previous preclinical and clinical research has investigated the role of intestinal microbiota in carcinogenesis. Growing evidence exists that intestinal microbiota can influence breast cancer carcinogenesis. However, the role of intestinal microbiota in breast cancer needs to be further investigated. This study aimed to identify the microbiota differences between postmenopausal breast cancer patients and controls. PATIENTS AND METHODS: This prospective cohort study compared the intestinal microbiota richness, diversity, and composition in postmenopausal histologically proven ER+/HER2- breast cancer patients and postmenopausal controls. Patients scheduled for (neo)adjuvant adriamycin, cyclophosphamide (AC), and docetaxel (D), or endocrine therapy (tamoxifen) were prospectively enrolled in a multicentre cohort study in the Netherlands. Patients collected a faecal sample and completed a questionnaire before starting systemic cancer treatment. Controls, enrolled from the National Dutch Breast Cancer Screening Programme, also collected a faecal sample and completed a questionnaire. Intestinal microbiota was analysed by amplicon sequencing of the 16S rRNA V4 gene region. RESULTS: In total, 81 postmenopausal ER+/HER2- breast cancer patients and 67 postmenopausal controls were included, resulting in 148 faecal samples. Observed species richness, Shannon index, and overall microbial community structure were not significantly different between breast cancer patients and controls. There was a significant difference in overall microbial community structure between breast cancer patients scheduled for adjuvant treatment, neoadjuvant treatment, and controls at the phylum (p = 0.042) and genus levels (p = 0.015). Dialister (p = 0.001) and its corresponding family Veillonellaceae (p = 0.001) were higher in patients scheduled for adjuvant treatment, compared to patients scheduled for neoadjuvant treatment. Additional sensitivity analysis to correct for the potential confounding effect of prophylactic antibiotic use, indicated no differences in microbial community structure between patients scheduled for neoadjuvant systemic treatment, adjuvant systemic treatment, and controls at the phylum (p = 0.471) and genus levels (p = 0.124). CONCLUSIONS: Intestinal microbiota richness, diversity, and composition are not different between postmenopausal breast cancer patients and controls. The increased relative abundance of Dialister and Veillonellaceae was observed in breast cancer patients scheduled for adjuvant treatment, which might be caused by a relative decrease in other bacteria due to prophylactic antibiotic administration rather than an absolute increase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...