Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(13): 5515-5523, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38595773

RESUMO

We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.

2.
Sci Rep ; 11(1): 12435, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127715

RESUMO

Two-dimensional freestanding thin films of single crystalline oxide perovskites are expected to have great potential in integration of new features to the current Si-based technology. Here, we showed the ability to create freestanding single crystalline (011)- and (111)-oriented SrRuO3 thin films using Sr3Al2O6 water-sacrificial layer. The epitaxial Sr3Al2O6(011) and Sr3Al2O6(111) layers were realized on SrTiO3(011) and SrTiO3(111), respectively. Subsequently, SrRuO3 films were epitaxially grown on these sacrificial layers. The freestanding single crystalline SrRuO3(011)pc and SrRuO3(111)pc films were successfully transferred on Si substrates, demonstrating possibilities to transfer desirable oriented oxide perovskite films on Si and arbitrary substrates.

3.
Chemistry ; 26(42): 9084-9098, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32077166

RESUMO

Research into 2-dimensional materials has soared during the last couple of years. Next to van der Waals type 2D materials such as graphene and h-BN, less well-known oxidic 2D equivalents also exist. Most 2D oxide nanosheets are derived from layered metal oxide phases, although few 2D oxide phases can be also made by bottom-up solution syntheses. Owing to the strong electrostatic interactions within layered metal oxide crystals, a chemical process is usually needed to delaminate them into their 2D constituents. This Review article provides an overview of the synthesis of oxide nanosheets, and methods to assemble them into nanocomposites, mono- or multilayer films. In particular, the use of Langmuir-Blodgett methods to form monolayer films over large surface areas, and the emerging use of ink jet printing to form patterned functional films is emphasized. The utilization of nanosheets in various areas of technology, for example, electronics, energy storage and tribology, is illustrated, with special focus on their use as seed layers for epitaxial growth of thin films, and as electrochemically active electrodes for supercapacitors and Li ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...