Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406594, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940263

RESUMO

Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high-energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40%-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12%-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.

2.
Small ; : e2402256, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794863

RESUMO

Sodium (Na)-metal batteries (SMBs) are considered one of the most promising candidates for the large-scale energy storage market owing to their high theoretical capacity (1,166 mAh g-1) and the abundance of Na raw material. However, the limited stability of electrolytes still hindered the application of SMBs. Herein, sulfolane (Sul) and vinylene carbonate (VC) are identified as effective dual additives that can largely stabilize propylene carbonate (PC)-based electrolytes, prevent dendrite growth, and extend the cycle life of SMBs. The cycling stability of the Na/NaNi0.68Mn0.22Co0.1O2 (NaNMC) cell with this dual-additive electrolyte is remarkably enhanced, with a capacity retention of 94% and a Coulombic efficiency (CE) of 99.9% over 600 cycles at a 5 C (750 mA g-1) rate. The superior cycling performance of the cells can be attributed to the homogenous, dense, and thin hybrid solid electrolyte interphase consisting of F- and S-containing species on the surface of both the Na metal anode and the NaNMC cathode by adding dual additives. Such unique interphases can effectively facilitate Na-ion transport kinetics and avoid electrolyte depletion during repeated cycling at a very high rate of 5 C. This electrolyte design is believed to result in further improvements in the performance of SMBs.

3.
Nat Energy ; 8(12): 1345-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249622

RESUMO

The solid-electrolyte interphase (SEI) critically governs the performance of rechargeable batteries. An ideal SEI is expected to be electrically insulative to prevent persistently parasitic reactions between the electrode and the electrolyte and ionically conductive to facilitate Faradaic reactions of the electrode. However, the true nature of the electrical properties of the SEI remains hitherto unclear due to the lack of a direct characterization method. Here we use in situ bias transmission electron microscopy to directly measure the electrical properties of SEIs formed on copper and lithium substrates. We reveal that SEIs show a voltage-dependent differential conductance. A higher rate of differential conductance induces a thicker SEI with an intricate topographic feature, leading to an inferior Coulombic efficiency and cycling stability in Li∣∣Cu and Li∣∣LiNi0.8Mn0.1Co0.1O2 cells. Our work provides insight into the targeted design of the SEI with desired characteristics towards better battery performance.

4.
ACS Omega ; 5(37): 23843-23853, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984704

RESUMO

To design safe and electrochemically stable electrolytes for lithium-ion batteries, this study describes the synthesis and the utilization of new deep eutectic solvents (DESs) based on the mixture of 2,2,2-trifluoroacetamide (TFA) with a lithium salt (LiTFSI, lithium bis[(trifluoromethane)sulfonyl]imide). These prepared DESs were characterized in terms of thermal properties, ionic conductivity, viscosity, and electrochemical properties. Based on the appearance of the product and DSC measurements, it appears that this system is liquid at room temperature for LiTFSI mole fraction ranging from 0.25 to 0.5. At χLiTFSI = 0.25, DESs exhibited favorable electrolyte properties, such as thermal stability (up to 148 °C), relatively low viscosity (42.2 mPa.s at 30 °C), high ionic conductivity (1.5 mS.cm-1 at 30 °C), and quite large electrochemical stability window up to 4.9-5.3 V. With these interesting properties, selected DES was diluted with slight amount of ethylene carbonate (EC). Different amounts of EC (x = 0-30 %wt) were used to form hybrid electrolytes for battery testing with high voltage LiMn2O4 cathode and Li anode. The addition of the EC solvent into DES expectedly aims at enhancing the battery cycling performance at room temperature due to reducing the viscosity. Preliminary results tests clearly show that LiTFSI-based DES can be successfully introduced as an electrolyte in the lithium-ion batteries cell with a LiMn2O4 cathode material. Among all of the studied electrolytes, DES (LiTFSI: TFA = 4:1 + 10 %wt EC) is the most promising. The EC-based system exhibited a good specific capacity of 102 mAh.g-1 at C/10 with the theoretical capacity of 148 mAh.g-1 and a good cycling behavior maintaining at 84% after 50 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...