Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 52(3): 1215-1224, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33934292

RESUMO

To date, endophytic actinomycetes have been well-documented as great producers of novel antibiotics and important pharmaceutical leads. The present study aimed to evaluate potent bioactivities of metabolites synthesized by the strain LCP18 residing in the Vietnamese medicinal plant Litsea cubeba (Lour.) Pers towards human pathogenic bacteria and human cancer cell lines. Endophytic actinomycete strain LCP18 showed considerable inhibition against seven bacterial pathogens and three human tumor cell lines and was identified as species Streptomyces variabilis. Strain S. variabilis LCP18 was phenotypically resistant to fosfomycin, trimethoprim-sulfamethoxazole, dalacin, cefoxitin, rifampicin, and fusidic acid and harbored the two antibiotic biosynthetic genes such as PKS-II and NRPS. Further purification and structural elucidation of metabolites from the LCP18 extract revealed five plant-derived bioactive compounds including isopcrunetin, genistein, daidzein, syringic acid, and daucosterol. Among those, isoprunetin, genistein, and daidzein exhibited antibacterial activity against Salmonella typhimurium ATCC 14,028 and methicillin-resistant Staphylococcus epidermidis ATCC 35,984 with the MIC values ranging from 16 to 128 µg/ml. These plant-derived compounds also exhibited cytotoxic effects against human lung cancer cell line A549 with IC50 values of less than 46 µM. These findings indicated that endophytic S. variabilis LCP18 can be an alternative producer of plant-derived compounds which significantly show potential applications in combating bacterial infections and inhibition against lung cancer cell lines.


Assuntos
Antibacterianos , Litsea , Compostos Fitoquímicos/farmacologia , Streptomyces , Células A549 , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Humanos , Litsea/microbiologia , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/química , Streptomyces/química , Streptomyces/genética
2.
Chem Biol Drug Des ; 94(1): 1414-1421, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30908888

RESUMO

In this report are used two data sets involving the main antidiabetic enzyme targets α-amylase and α-glucosidase. The prediction of α-amylase and α-glucosidase inhibitory activity as antidiabetic is carried out using LDA and classification trees (CT). A large data set of 640 compounds for α-amylase and 1546 compounds in the case of α-glucosidase are selected to develop the tree model. In the case of CT-J48 have the better classification model performances for both targets with values above 80%-90% for the training and prediction sets, correspondingly. The best model shows an accuracy higher than 95% for training set; the model was also validated using 10-fold cross-validation procedure and through a test set achieving accuracy values of 85.32% and 86.80%, correspondingly. Additionally, the obtained model is compared with other approaches previously published in the international literature showing better results. Finally, we can say that the present results provided a double-target approach for increasing the estimation of antidiabetic chemicals identification aimed by double-way workflow in virtual screening pipelines.


Assuntos
Inibidores Enzimáticos/química , Modelos Estatísticos , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/química , Bases de Dados de Compostos Químicos , Diabetes Mellitus/tratamento farmacológico , Análise Discriminante , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
3.
PLoS One ; 13(2): e0192176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420638

RESUMO

Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Modelos Teóricos
4.
Int J Mol Sci ; 17(6)2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27240357

RESUMO

This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel's Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms.


Assuntos
Preparações Farmacêuticas/química , Algoritmos , Gráficos por Computador , Desenho de Fármacos , Entropia
5.
SAR QSAR Environ Res ; 24(3): 235-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437773

RESUMO

Quantitative structure-activity relationship models for the prediction of mode of toxic action (MOA) of 221 phenols to the ciliated protozoan Tetrahymena pyriformis using atom-based quadratic indices are reported. The phenols represent a variety of MOAs including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles and soft electrophiles. Linear discriminant analysis (LDA), and four machine learning techniques (ML), namely k-nearest neighbours (k-NN), support vector machine (SVM), classification trees (CTs) and artificial neural networks (ANNs), have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. Most of them showed global accuracy of over 90%, and false alarm rate values were below 2.9% for the training set. Cross-validation, complementary subsets and external test set were performed, with good behaviour in all cases. Our models compare favourably with other previously published models, and in general the models obtained with ML techniques show better results than those developed with linear techniques. We developed unsupervised and supervised consensus, and these results were better than our ML models, the results of rule-based approach and other ensemble models previously published. This investigation highlights the merits of ML-based techniques as an alternative to other more traditional methods for modelling MOA.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Estrutura Molecular , Fenóis/química , Fenóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Tetrahymena pyriformis/efeitos dos fármacos , Inteligência Artificial , Modelos Estatísticos , Redes Neurais de Computação
6.
Mol Divers ; 15(2): 507-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20814821

RESUMO

The present work is devoted to the development and application of a multi-agent Quantitative Structure-Activity Relationship (QSAR) classification system for tyrosinase inhibitor identification, in which the individual QSAR outputs are the inputs of a fusion approach based on the voting mechanism. The individual models are based on TOMOCOMD-CARDD (TOpological Molecular COMputational Design-Computer Aided Rational Drug Design) atom-based bilinear descriptors and Linear Discriminant Analysis (LDA) on a novel enlarged, balanced database of 1,429 compounds within 701 greatly dissimilar molecules presenting anti-tyrosinase activity. A total of 21 adequate models are obtained taking into account the requirements of the Organization for Economic Cooperation and Development (OECD) principles for QSAR validation and present global accuracies (Q) above 84.50 and 79.27% in the training and test sets, respectively. The resulted fusion system is used for the in silico identification of synthesized coumarin derivatives as novel tyrosinase inhibitors. The 7-hydroxycoumarin (compound C07) shows potent activity for the inhibition of monophenolase activity of mushroom tyrosinase giving a value of inhibition percentage close to 100% in vitro assays, by means of spectrophotometric analysis. The current report could help to shed some clues in the identification of new chemicals that inhibit tyrosinase enzyme, for entering in the pipeline of drug discovery development.


Assuntos
Cumarínicos/química , Bases de Dados Factuais , Descoberta de Drogas , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Algoritmos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Fármacos , Ligantes , Modelos Teóricos , Reprodutibilidade dos Testes , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA