Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sep Sci ; 44(10): 2029-2036, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33682357

RESUMO

A simple and reliable high-performance liquid chromatography method was developed to determine the enantiomeric impurity of tenofovir disoproxil fumarate, an orally bioavailable prodrug of tenofovir, commonly used for the treatment of human immunodeficiency virus and hepatitis B. Tenofovir disoproxil and its enantiomer, were completely separated on a Chiralpak IC column (3 µm, 100 × 4.6 mm, i.d.). The chiral separation was achieved using a mobile phase containing n-hexane, ethanol, methanol, and triethylamine 65/25/10/0.1 (v/v/v/v) at a flow rate of 0.6 mL/min. Ideally, the reversal of enantiomer elution order was achieved on the Chiralpak IC column, to allow the elution of the minor enantiomeric impurity before the major component. Moreover, the proposed method was able to discriminate the active ingredient from the related substances available in the tenofovir disoproxil fumarate raw materials. These compounds were isolated and structurally elucidated by MS and nuclear magnetic resonance. Based on the spectral data, the structures of related substances were confirmed as tenofovir isoproxil monoester and fumaric acid. The high-performance liquid chromatography method was optimized by the design of experiment approach and successfully validated following the International Conference on Harmonization guideline. Proposed method was effectively applied for the quantification of enantiomeric impurity in tenofovir disoproxil fumarate raw materials.


Assuntos
Antivirais/química , Cromatografia Líquida de Alta Pressão/métodos , Tenofovir/química , Contaminação de Medicamentos , Pró-Fármacos/química , Estereoisomerismo
2.
J Sep Sci ; 43(24): 4480-4487, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058501

RESUMO

Linagliptin is a highly specific, long-acting inhibitor that is used as an orally administrable agent for type-2 diabetes treatment. Because only the R-enantiomer is of clinical use, we developed a capillary electrophoresis method for the determination of the enantiomeric impurity of this compound. Carboxymethyl-ß-cyclodextrin was selected as the chiral selector for the separation of linagliptin enantiomers. Design of experiments and desirability functions were used for the analytical optimization, which was focused on understanding and improving the electrophoretic process. The effects of significant parameters (background electrolyte concentration and pH, cyclodextrin concentration, temperature, and voltage) were thoroughly investigated. The complete separation of linagliptin and its enantiomeric impurity with baseline resolution was achieved within 10 min on an uncoated fused-silica capillary (50 µm inner diameter, 365 µm outer diameter, 64.5/56 cm in total/ effective length) maintained at 25°C, under an applied voltage of 28.0 kV. The background electrolyte contained 70 mM sodium acetate and 4.7 mM carboxymethyl-ß-cyclodextrin, and the pH was adjusted to 6.10. The method was validated, and a limit of quantitation of 0.05% for the impurity was estimated.


Assuntos
Hipoglicemiantes/análise , Linagliptina/análise , Eletroforese Capilar , Estrutura Molecular , Dióxido de Silício/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA