Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475283

RESUMO

This manuscript presents a comprehensive study on the sustainable optimization of asphalt mixtures tailored for regions prone to flooding. The research addresses the challenges associated with water damage to asphalt pavements by incorporating innovative additives. The study centers on incorporating recycled Low-Density Polyethylene (LDPE) and a tailored Carnauba-Soybean Oil Additive, advancing asphalt mixtures with a Control mix, LDPE (5%) + Control, and LDPE (5%) + 3% Oil + Control. A critical aspect of the research involves subjecting these mixtures to 30 wetting and drying cycles, simulating the conditions prevalent in tropical flood-prone areas. The incorporation of innovative additives in asphalt mixtures has demonstrated significant improvements across various performance parameters. Tensile Strength Ratio (TSR) tests revealed enhanced tensile strength, with the LDPE (5%) + 3% Oil-modified mixture exhibiting an impressive TSR of 85.7%. Dynamic Modulus tests highlighted improved rutting resistance, showcasing a remarkable increase to 214 MPa in the LDPE (5%) with a 3% Oil-modified mixture. The Semi-Circular Bending (SCB) test demonstrated increased fracture resistance and energy absorption, particularly in the LDPE (5%) with 3% Oil-modified mixture. Hamburg Wheel-Tracking (HWT) tests indicated enhanced moisture resistance and superior rutting resistance at 20,000 cycles for the same mixture. Cantabro tests underscored improved aggregate shatter resistance, with the LDPE (5%) + 3% Oil-modified mixture exhibiting the lowest weight loss rate at 9.820%. Field tests provided real-world insights, with the LDPE (5%) + 3% Oil mixture displaying superior stability, a 61% reduction in deflection, and a 256% improvement in surface modulus over the control mixture. This research lays the groundwork for advancing the development of sustainable, high-performance road pavement materials, marking a significant stride towards resilient infrastructure in flood-prone areas.

2.
Polymers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959936

RESUMO

Rising traffic volume, heavy loads, and construction activities have raised concerns about expansion joint device damage. This study focuses on developing an innovative expansion joint using polymer-modified rubber asphalt as the filling material to enhance its service life. Styrene-butadiene-styrene (SBS) emerged as a suitable modifier for rubber-modified asphalt, significantly improving elasticity and adhesion. Through the strategic combination of 3- and 2-block linear SBS, the elasticity and adhesion properties were significantly improved, resulting in the formulation of a well-suited polymer-modified rubber asphalt binder. The developed asphalt binder exhibits impressive elastic recovery (61.1% to 66.1%), surpassing commercial products, with enhanced constructability and workability (15% to 21% viscosity reduction). The carefully engineered mastic asphalt mixture showcases self-leveling characteristics at a moderate 210 °C, addressing historical constructability challenges. Settlement is 40% less than traditional hot mix asphalt for surface layers, with improved moisture and stripping resistance, enhancing existing asphalt plug joint durability and workability. Collectively, this novel mixture, comprising polymer-modified rubber and mastic asphalt, showcases the potential to enhance the durability of existing asphalt plug joints while ensuring superior constructability and workability.

3.
Polymers (Basel) ; 15(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38006186

RESUMO

This research investigates the quantitative impact of incorporating epoxy resin and crumb rubber powder (CRP) into cement asphalt mortar (CAM) for railway track stabilization. The study reveals significant improvements in various key parameters compared to conventional CAM. The modified CAM exhibits a 12.7% reduction in flow time, indicative of enhanced flowability, and a substantial 62.4% decrease in the mixing stability gap, demonstrating superior mixing stability. Additionally, the modified CAM displays remarkable early-age compressive strength, with increases of up to 15.3% compared to traditional CAM formulations. Importantly, the modified CAM showcases robust resistance to challenging environmental conditions, with only a 6.7% strength reduction after exposure to sulfuric acid, highlighting its acid resistance, and exceptional freeze-thaw resistance, with a mere 1.5% strength reduction after undergoing six cycles. In a mock-up test simulating real-world conditions, the modified CAM effectively prevents ballast layer settlement, underscoring its potential to enhance the durability of railway track infrastructure. These quantitative findings not only endorse the practical feasibility of epoxy resin and CRP-enhanced CAM but also suggest its potential to contribute significantly to railway track longevity, reduce maintenance expenditures, and ensure operational reliability.

4.
Polymers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571187

RESUMO

This research addresses the urgent need for sustainable and durable asphalt mixtures by quantitatively investigating the effects of incorporating waste plastic aggregate (WPA) and magnesium-based additives. This study explores WPA content levels of 3%, 5%, and 7% wt of aggregate in combination with a fixed 3% wt epoxy resin content to the asphalt binder, supplemented with the 1.5% wt magnesium-based additive. The novelty of this research lies in its comprehensive analysis of various performance parameters, including deformation strength, indirect tensile strength (ITS), rut depth, and dynamic stability, to assess the impact of WPA, epoxy resin, and the magnesium-based additive on asphalt mixture properties. The results demonstrate significant improvements in key performance aspects with increasing WPA content. The WPA mixtures exhibit enhanced deformation strength, with values of 4.01, 3.7, and 3.32 MPa for 3, 5, and 7% wt WPA content, respectively, compared to the control mixture. Furthermore, the inclusion of WPA and epoxy resin, along with the magnesium-based additive, contributes to improved adhesion, cohesion, and resistance to stripping damage. Notably, the 7% wt WPA mixture showcases exceptional performance, characterized by a final rut depth of 2.66 mm and a dynamic stability of 7519 passes per millimeter, highlighting its superior rutting resistance and load-bearing capacity. This study also reveals the influence of WPA content on ITS and stiffness properties, with the 5% wt WPA mixture achieving an optimal balance between strength and stiffness. Overall, this research highlights the potential of incorporating WPA, epoxy resin, and magnesium-based additives in asphalt mixtures to enhance their performance and durability. By utilizing plastic waste materials and optimizing their combination with epoxy reinforcement, along with the innovative use of magnesium-based additive, the findings contribute to the development of sustainable infrastructure materials and pave the way for further advancements in the field.

5.
Polymers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447475

RESUMO

This study addresses the challenges of overlaying old concrete pavement with asphalt by introducing a new trackless tack coat material containing polymer. The aim is to enhance the durability of asphalt concrete overlay pavement on old cement concrete pavement. It contributes to the development of improved construction techniques for pavement rehabilitation and highlights the need for reliable adhesion performance evaluation based on different spray amounts and surface conditions. Additionally, to evaluate the effect of the adhesion performance based on the spraying amount, a tensile adhesion test was conducted by applying spray amounts of 0.30, 0.45, and 0.60 l/m2 on different surface conditions. The basic and adhesion performances of the polymer-modified tack coat material are evaluated through direct tensile and shear bond strength tests. The test outcomes demonstrated that the newly developed polymer-modified tack coat material had considerably greater adhesion strength compared to the traditional rapid-setting products. Its adhesive strength was 1.68 times higher on concrete and 1.78 times higher on asphalt. The new trackless tack coat material exhibited an adhesion performance of 1.05 MPa in direct tensile strength at 0.45 l/m2, which was 1.21 times higher than the rapid-setting tack coat. Results also confirmed that the new tack coat material exhibits values 1.90 times greater than the conventional rapid-setting tack coat material in shear bond strength, respectively. By simulating the process of separation and re-adhesion of pavement layers caused, the new tack coat material shows a tensile adhesion strength of 63% of the original state, which is advantageous for securing the durability of the pavement. Overall, the newly developed polymer-modified trackless tack coat has been shown to effectively enhance the adhesion performance between pavement layers without process delay, highlighting the potential of the new tack coat material to enhance the durability of asphalt concrete overlay pavement on old cement concrete pavement.

6.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299303

RESUMO

The quality of pavements in tropical climates is negatively affected by the frequent wet and dry cycles during the rainy season, as well as by issues related to overloading from heavy trucks and traffic congestion. Contributing to this deterioration are factors such as acid rainwater, heavy traffic oils, and municipal debris. In light of these challenges, this study aims to assess the viability of a polymer-modified asphalt concrete mixture. This study investigates the feasibility of a polymer-modified asphalt concrete mixture with the addition of 6% crumb rubber powder from waste car tires and 3% epoxy resin to counter the harsh conditions of tropical climate weather. The study involved subjecting test specimens to five to 10 cycles of contaminated water (100% rainwater + 10% used oil from trucks), curing for 12 h, and air drying in a chamber of 50 °C for 12 h to simulate critical curing conditions. The specimens underwent fundamental laboratory performance tests such as the indirect tensile strength test, dynamic modulus test, four points bending test, and Cantabro test, as well as the double load condition in the Hamburg wheel tracking test to determine the effectiveness of the proposed polymer-modified material in actual conditions. The test results confirmed that the simulated curing cycles had a critical impact on the durability of the specimens, with the greater curing cycles leading to a significant drop in the strength of the material. For example, the TSR ratio of the control mixture dropped from 90% to 83% and 76% after five and 10 curing cycles, respectively. Meanwhile, the modified mixture showed a decrease from 93% to 88% and 85% under the same conditions. The test results revealed that the effectiveness of the modified mixture outperformed the conventional condition in all tests, with a more prominent impact observed under overload conditions. Under double conditions in the Hamburg wheel tracking test and a curing condition of 10 cycles, the maximum deformation of the control mixture sharply increased from 6.91 to 22.7 mm, whereas the modified mixture increased from 5.21 to 12.4 mm. Overall, the test results confirm the durability of the polymer-modified asphalt concrete mixture under harsh tropical climate conditions, promoting its application for sustainable pavements, especially in Southeast Asian countries.

7.
Materials (Basel) ; 16(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049108

RESUMO

Conventional hot mix asphalt overlaying on trench infrastructure typically necessitates extended cooling times for further works and can have adverse effects on buried components, such as electricity cables and hot water pipes. Therefore, this research aims to investigate the use of warm guss mastic asphalt (at an installation temperature of 160 °C) as an overlaying material for mini-trenches, which can reduce the cooling time required for traffic opening and improve the efficiency of the construction process. This research involved two stages: first, lab testing and related research results were used to generate the thermal conductivity and specific heat necessary for simulation work. Second, a finite element model analysis was conducted to evaluate the thermal transmission of the overlaying surface and the buried conduit based on the summer pavement temperature distribution through the Korean Pavement Research Program. Afterward, the field test bed was constructed to verify the simulation. The results indicate that the optimal thickness of the overlaying material and the concrete covering should be designed to ensure thermal durability and meet traffic opening requirements. The overlaying depth of the mini trench using warm mix guss mastic asphalt should be less than 100 mm to meet with the traffic opening time, while the thickness of the concrete covering should be designed to be more than 100 mm to ensure thermal durability. Additionally, the findings suggest that the application of warm guss asphalt could reduce the opening time by 30 min to 1 h and 25 min compared to conventional hot guss asphalt materials. When the pavement surface temperature for the traffic opening is controlled at 50 °C, the asphalt mixture requires at least 2 h to 5 h to meet the cooling criteria for traffic opening, respectively. Overall, this research confirms the potential benefits and optimal use of warm guss mastic asphalt in the construction process of mini-trenches.

8.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050307

RESUMO

This paper proposes a performance-based mix design (PBMD) framework to support performance-related specifications (PRS) needed to establish relationships between acceptable quality characteristics (AQCs) and predicted performance, as well as to develop fatigue-preferred, rutting-preferred, and performance-balanced mix designs. The framework includes defining performance tests and threshold values, developing asphalt mix designs, identifying available performance levels, conducting sensitivity analysis, establishing the relationships between AQCs and predicted performance, and determining performance targets and AQC values for the three PBMDs using predicted performance criteria. Additionally, the framework recommends selecting the PBMD category for each asphalt layer to minimize pavement distresses. In this study, the proposed PBMD protocol was applied to FHWA accelerated loading facility (ALF) materials using asphalt mixture performance tester (AMPT) equipment coupled with mechanistic models. The study developed nine mix designs with varying design VMAs and air voids using the Bailey method. The cracking and rutting performance of the mix designs were determined by direct tension cyclic (DTC) fatigue testing, triaxial stress sweep (TSS) testing, and viscoelastic continuum damage (S-VECD) and viscoplastic shift models for temperature and stress effects. The study found that adjusting the design VMA was the primary way to achieve required performance targets. For fatigue-preferred mix design, the recommended targets were a cracking area of 0 to 1.9%, a rut depth of 10 mm, and a design VMA of 14.6 to 17.6%. For rutting-preferred mix design, the recommended targets were a cracking area of 18%, a rut depth of 0 to 3.8 mm, and a design VMA of 10.1 to 13.1%. For performance-balanced mix design, the recommended targets were a cracking area of 8.1 to 10.7%, a rut depth of 4.6 to 6.4 mm, and a design VMA of 12.6 to 14.3%. Finally, pavement simulation results verified that the proposed PBMD pavement design with fatigue-preferred mix in the bottom layer, performance-balanced mix in the intermediate layer, and rutting-preferred mix in the surface mix could minimize bottom-up cracking propagation without exceeding the proposed rutting performance criterion for long-life.

9.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772029

RESUMO

The purpose of this research was to promote the recycling of pellet asphalt with Crumb Rubber Modifier (CRM) and Graphite Nanoplatelet (GNP) in pothole restoration. In this study, several laboratory tests were carried out on mixes containing CRM content ratios of 5%, 10%, and 20% and GNP content of 3% and 6% in order to identify the ideal mixing ratio of pellet-type asphalt paving materials. The Marshall stability test, the Hamburg wheel tracking test, and the dynamic modulus test were all performed to compare the effectiveness of the proposed method and heated asphalt combinations. Afterward, the full-scale testbed was conducted to verify the practical application between the proposed method and popular pothole-repairing materials. Both laboratory and field test findings confirmed that the asphalt pavement using 5% CRM and 6% GNP improved the resistance to plastic deformation and anti-stripping compared to the generally heated asphalt paving material, thereby extending road life. However, the resistance to fatigue cracking can be slightly reduced by incorporating these additives. Overall, the CRM and GNP asphalt pellet approach is a feasible solution for sustainable pavement maintenance and rehabilitation, particularly in small-scale damage areas such as potholes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...