Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739468

RESUMO

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Assuntos
Alopecia , Folículo Piloso , Indóis , Polímeros , Quercetina , Espécies Reativas de Oxigênio , Alopecia/tratamento farmacológico , Alopecia/patologia , Quercetina/farmacologia , Quercetina/administração & dosagem , Quercetina/química , Animais , Indóis/química , Indóis/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Polímeros/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Humanos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
2.
Mater Sci Eng C Mater Biol Appl ; 116: 111143, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806229

RESUMO

Surface tension-driven assembly is a simple routine used in modular tissue engineering to create three-dimensional (3D) biomimetic tissues with desired structural and biological characteristics. A major bottleneck for this technology is the lack of suitable hydrogel materials to meet the requirements of the assembly process and tissue regeneration. Identifying specific requirements and synthesizing novel hydrogels will provide a versatile platform for generating additional biomimetic functional tissues using this approach. In this paper, we present a novel composite hydrogel system based on methacrylated gelatin and γ-polyglutamic acid by UV copolymerization as the building block for fabricating vascular-like tissue via surface tension-driven assembly. The resulting composite hydrogels exhibited the improved mechanical properties and hydrophilicity, which greatly facilitate the assembly process. Subsequent cell encapsulation experiment proved that the hydrogel could provide 3D support for cellular spreading and migration. Furthermore, based on the composite microgel building blocks, cylindrical vascular-like construct with a perfusable microchannel was generated by the needle-assisted sequential assembly. In order to construct a biomimetic vascular tissue, the endothelial cells and smooth muscle cells were encapsulated in the microgels assembly with a spatial arrangement to build a heterogeneous double-layer tubular structure and the cells could readily elongate and migrate in the hollow concentric construct over 3 days. These data suggest that this composite hydrogel is an attractive candidate for surface tension-driven assembly purposes, making the hydrogel potentially applicable in the fabrication of biomimetic vascularized tissues.


Assuntos
Células Endoteliais , Hidrogéis , Gelatina , Tensão Superficial , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...