Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain Behav Immun Health ; 31: 100654, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37449286

RESUMO

Sepsis is associated with numerous physiological and biochemical abnormalities that result in a life-threatening condition. The involvement of the Central Nervous System (CNS) during sepsis has received considerable attention, especially the hippocampus which plays a key role in the learning and memory processes. The increased interest in this limbic region during systemic inflammation (SI) is related to the number of sepsis survivor patients who have cognitive impairments. A single injection of lipopolysaccharide (LPS)-induced systemic inflammation is the most commonly used murine endotoxemia model because it replicates several pathophysiological changes observed in severe sepsis. Molecular hydrogen (H2) has been used as an anti-inflammatory therapeutic strategy to prevent neuroinflammation. However, the mechanisms by which inhaled H2 mitigate memory loss during SI remains unknown. To understand how H2 acts in the hippocampus, the current study focused on specific mechanisms that may be involved in reducing neuroinflammation in rats during SI. We hypothesized that inhaled H2 decreases LPS-induced hippocampal pro-inflammatory cytokines surges and this effect is associated with reduced memory loss. Using different and integrative approaches, i.e., from hippocampal cells electrophysiology to animal behavior, we report that inhaled H2 decreased LPS-induced peripheral and hippocampal inflammation, decreased microglial and astrocytic activation, lessen memory loss without affecting long-term potentiation (LTP). To our knowledge, this is the first evidence showing that inhaled H2 reduces hippocampal microglial and glial cells inflammation, which may be associated with a reduced memory impairment induced by SI.

2.
Int J Neural Syst ; 30(5): 2050022, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285725

RESUMO

Wistar Audiogenic Rats (WARs) are genetically susceptible to sound-induced seizures that start in the brainstem and, in response to repetitive stimulation, spread to limbic areas, such as hippocampus. Analysis of the distribution of interevent intervals of GABAergic inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells showed a monoexponential trend in Wistar rats, suggestive of a homogeneous population of synapses, but a biexponential trend in WARs. Based on this, we hypothesize that there are two populations of GABAergic synaptic release sites in CA1 pyramidal neurons from WARs. To address this hypothesis, we used a well-established neuronal computational model of a CA1 pyramidal neuron previously developed to replicate physiological properties of these cells. Our simulations replicated the biexponential trend only when we decreased the release frequency of synaptic currents by a factor of six in at least 40% of distal synapses. Our results suggest that almost half of the GABAergic synapses of WARs have a drastically reduced spontaneous release frequency. The computational model was able to reproduce the temporal dynamics of GABAergic inhibition that could underlie susceptibility to the spread of seizures.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Modelos Animais de Doenças , Ratos , Ratos Wistar
3.
Neurosci Lett ; 721: 134830, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32044393

RESUMO

Here, we investigated the participation of pro and anti-inflammatory cytokines in the spread of repeated audiogenic seizures from brainstem auditory structures to limbic areas, including the hippocampus. We used Wistar Audiogenic Rats (WARs) and Wistars submitted to the audiogenic kindling protocol with a loud broad-band noise. We measured pro and anti-inflammatory cytokines and nitrate levels in the hippocampus of stimulated animals. Our results show that all WARs developed audiogenic seizures that evolved to limbic seizures whereas seizure-resistant controls did not present any seizures. However, regardless of seizure severity, we did not observe differences in the pro inflammatory cytokines IL-1ß, IL-6, TNF-α and IFN-α or in the anti-inflammatory IL-10 in the hippocampi of audiogenic and resistant animals. We also did not find any differences in nitrate content. Our data indicate that the spread of seizures during the audiogenic kindling is not dependent on hippocampal release of cytokines or oxidative stress, but the severity of brainstem seizures will be higher in animals with higher levels of cytokines and the oxidative stress marker, nitrate.


Assuntos
Estimulação Acústica/efeitos adversos , Epilepsia Reflexa/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Excitação Neurológica/metabolismo , Animais , Epilepsia Reflexa/etiologia , Feminino , Ratos , Ratos Wistar , Convulsões/etiologia , Convulsões/metabolismo
4.
J Physiol ; 597(9): 2515-2532, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30927460

RESUMO

KEY POINTS: Neurons from the brainstem nucleus of the tractus solitarius (NTS) participate in the counter-regulatory mechanisms in response to hypoglycaemia. ATP-sensitive potassium (KATP ) channels are expressed in NTS neurons, and are partially open at rest in normoglycaemic 5 mM glucose. In normoglycaemic conditions, most NTS neurons depolarize in response to low external glucose (0.5 mM), via a voltage-dependent mechanism. Conversely, most NTS neurons incubated in hyperglycaemic 10 mM glucose do not respond to low glucose due to a more positive resting membrane potential caused by the closure of KATP channels following increased intracellular metabolic ATP. Our findings show that in hyperglycaemic conditions, NTS neurons failed to sense rapid changes in external glucose, which could be related to hypoglycaemia-associated autonomic failure. ABSTRACT: The nucleus of the tractus solitarius (NTS) is an integrative centre for autonomic counter-regulatory responses to hypoglycaemia. KATP channels link the metabolic status of the neuron to its excitability. Here we investigated the influence of KATP channels on the membrane potential of NTS neurons in normo- and hyperglycaemic external glucose concentrations, and after switching to a hypoglycaemic concentration, using in vitro electrophysiological recordings in brainstem slices. We found that in normoglycaemic (5 mM) glucose, tolbutamide, a KATP channel antagonist, depolarized the membrane of most neurons, and this effect was observed in more hyperpolarized neurons. All neurons hyperpolarized after pharmacological activation of KATP channels. Most NTS neurons depolarized in the presence of low glucose (0.5 mM), and this effect was only seen in hyperpolarized neurons. The effect of glucose was caused by a cationic current with a reversal potential around -50 mV. In the presence of hyperglycaemic glucose (10 mM), neurons were more depolarized, and fewer neurons responded to KATP blockage. Application of 0.5 mM glucose solution to these neurons depolarized the membrane only in more hyperpolarized neurons. We conclude that NTS neurons present with KATP channels open at rest in normoglycaemic conditions, and their membrane potential is affected by extracellular glucose. Moreover, NTS neurons depolarize the membrane in response to the application of a low glucose solution, but this effect is occluded by membrane depolarization triggered by KATP blockage. Our data suggest a homeostatic regulation of the membrane potential by external glucose, and a possible mechanism related to the hypoglycaemia-associated autonomic failure.


Assuntos
Potenciais de Ação , Glucose/metabolismo , Canais KATP/metabolismo , Neurônios/metabolismo , Núcleo Solitário/fisiologia , Animais , Glucose/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo
5.
Sci Rep ; 8(1): 10412, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991737

RESUMO

Despite the many studies focusing on epilepsy, a lot of the basic mechanisms underlying seizure susceptibility are mainly unclear. Here, we studied cellular electrical excitability, as well as excitatory and inhibitory synaptic neurotransmission of CA1 pyramidal neurons from the dorsal hippocampus of a genetic model of epilepsy, the Wistar Audiogenic Rat (WARs) in which limbic seizures appear after repeated audiogenic stimulation. We examined intrinsic properties of neurons, as well as EPSCs evoked by Schaffer-collateral stimulation in slices from WARs and Wistar parental strain. We also analyzed spontaneous IPSCs and quantal miniature inhibitory events. Our data show that even in the absence of previous seizures, GABAergic neurotransmission is reduced in the dorsal hippocampus of WARs. We observed a decrease in the frequency of IPSCs and mIPSCs. Moreover, mIPSCs of WARs had faster rise times, indicating that they probably arise from more proximal synapses. Finally, intrinsic membrane properties, firing and excitatory neurotransmission mediated by both NMDA and non-NMDA receptors are similar to the parental strain. Since GABAergic inhibition towards CA1 pyramidal neurons is reduced in WARs, the inhibitory network could be ineffective to prevent the seizure-dependent spread of hyperexcitation. These functional changes could make these animals more susceptible to the limbic seizures observed during the audiogenic kindling.


Assuntos
Região CA1 Hipocampal/metabolismo , Epilepsia Reflexa/genética , Epilepsia/genética , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Epilepsia/metabolismo , Epilepsia/patologia , Epilepsia Reflexa/patologia , Humanos , Células Piramidais/patologia , Ratos , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Sinapses/genética , Sinapses/patologia , Transmissão Sináptica/genética , Lobo Temporal/metabolismo , Lobo Temporal/patologia
6.
Eur J Neurosci ; 47(11): 1401-1413, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29779233

RESUMO

Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization-activated cationic current (Ih ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here, we investigated whether a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long-term high-intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih . On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long-term responses to high-intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih .


Assuntos
Percepção Auditiva/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciais da Membrana/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
7.
Braz. j. otorhinolaryngol. (Impr.) ; 83(2): 155-161, Mar.-Apr. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-839425

RESUMO

Abstract Introduction: Salicylate at high doses induces tinnitus in humans and experimental animals. However, the mechanisms and loci of action of salicylate in inducing tinnitus are still not well known. The expression of Immediate Early Genes (IEG) is traditionally associated with long-term neuronal modifications but it is still not clear how and where IEGs are activated in animal models of tinnitus. Objectives: Here we investigated the expression of c-fos and Egr-1, two IEGs, in the Dorsal Cochlear Nucleus (DCN), the Inferior Colliculus (IC), and the Posterior Ventral Cochlear Nucleus (pVCN) of rats. Methods: Rats were treated with doses known to induce tinnitus in rats (300 mg/kg i.p. daily, for 3 days), and c-fos and Egr-1 protein expressions were analyzed using western blot and immunocytochemistry. Results: After administration of salicylate, c-fos protein expression increased significantly in the DCN, pVCN and IC when assayed by western blot. Immunohistochemistry staining showed a more intense labeling of c-fos in the DCN, pVCN and IC and a significant increase in c-fos positive nuclei in the pVCN and IC. We did not detect increased Egr-1 expression in any of these areas. Conclusion: Our data show that a high dose of salicylate activates neurons in the DCN, pVCN and IC. The expression of these genes by high doses of salicylate strongly suggests that plastic changes in these areas are involved in the genesis of tinnitus.


Resumo Introdução: Salicilato em doses elevadas induz zumbido nos seres humanos e em animais experimentais. No entanto, os mecanismos e loci de ação do salicilato na indução de zumbido ainda não são bem conhecidos. A expressão dos genes precoces imediatos (GPIs) está tradicionalmente associada a alterações neuronais em longo prazo, mas ainda não está claro como e onde os GPIs são ativados em modelos animais de zumbido. Objetivos: No presente estudo investigamos a expressão de c-fos e Egr-1, dois GPIs, no núcleo coclear dorsal (NCD), colículo inferior (CI) e núcleo coclear ventral posterior (NCVp) de ratos. Métodos: Os ratos foram tratados com doses que, conhecidamente, induzem zumbido em ratos (300 mg/kg IP/dia, por três dias) e as expressões das proteínas c-fos e Egr-1 foram analisadas por meio de Western blot e imunoistoquímica. Resultados: Após a administração de salicilato, a expressão da proteína c-fos aumentou significativamente no NCD, NCVp e CI, quando analisados por Western blot. A coloração imunoistoquímica mostrou uma marcação mais intensa de c-fos no NCD, NCVp e CI e um aumento significativo de núcleos positivos de c-fos no NCVp e CI. Não detectamos aumento da expressão de Egr-1 em qualquer dessas áreas. Conclusão: Nossos dados mostram que uma dose alta de salicilato ativa neurônios no NCD, NCVp e CI. A expressão desses genes por doses altas de salicilato sugere que as alterações plásticas nessas áreas estão envolvidas na gênese do zumbido.


Assuntos
Animais , Masculino , Ratos , Colículos Inferiores/efeitos dos fármacos , Salicilatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Núcleo Coclear/efeitos dos fármacos , Salicilatos/administração & dosagem , Western Blotting , Genes fos/efeitos dos fármacos , Ratos Wistar , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos
8.
Braz J Otorhinolaryngol ; 83(2): 155-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27174774

RESUMO

INTRODUCTION: Salicylate at high doses induces tinnitus in humans and experimental animals. However, the mechanisms and loci of action of salicylate in inducing tinnitus are still not well known. The expression of Immediate Early Genes (IEG) is traditionally associated with long-term neuronal modifications but it is still not clear how and where IEGs are activated in animal models of tinnitus. OBJECTIVES: Here we investigated the expression of c-fos and Egr-1, two IEGs, in the Dorsal Cochlear Nucleus (DCN), the Inferior Colliculus (IC), and the Posterior Ventral Cochlear Nucleus (pVCN) of rats. METHODS: Rats were treated with doses known to induce tinnitus in rats (300mg/kg i.p. daily, for 3 days), and c-fos and Egr-1 protein expressions were analyzed using western blot and immunocytochemistry. RESULTS: After administration of salicylate, c-fos protein expression increased significantly in the DCN, pVCN and IC when assayed by western blot. Immunohistochemistry staining showed a more intense labeling of c-fos in the DCN, pVCN and IC and a significant increase in c-fos positive nuclei in the pVCN and IC. We did not detect increased Egr-1 expression in any of these areas. CONCLUSION: Our data show that a high dose of salicylate activates neurons in the DCN, pVCN and IC. The expression of these genes by high doses of salicylate strongly suggests that plastic changes in these areas are involved in the genesis of tinnitus.


Assuntos
Núcleo Coclear/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Colículos Inferiores/efeitos dos fármacos , Salicilatos/farmacologia , Animais , Western Blotting , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Salicilatos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...