Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168899, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029992

RESUMO

The versatile capacity of purple phototrophic bacteria (PPB) for producing valuable bioproducts has gathered renewed interest in the field of resource recovery and waste valorisation. However, greater knowledge regarding the viability of applying PPB technologies in outdoor, large-scale systems is required. This study assessed, for the first time, the upscaling of the phototrophic polyhydroxyalkanoate (PHA) production technology in a pilot-scale system operated in outdoor conditions. An integrated system composed of two up-flow anaerobic sludge blanket (UASB) reactors (for fermentation of wastewater with molasses), and two high-rate algal ponds retrofitted into PPB ponds, was operated in a wastewater treatment plant under outdoor conditions. UASB's adaptation to the outdoor temperatures involved testing different operational settings, namely hydraulic retention times (HRT) of 48 and 72 h, and molasses fermentation in one or two UASBs. Results have shown that the fermentation of molasses in both UASBs with an increased HRT of 72 h was able to ensure a suitable operation during colder conditions, achieving 3.83 ± 0.63 g CODFermentative Products/L, compared to the 3.73 ± 0.85 g CODFermentative Products/L achieved during warmer conditions (molasses fermentation in one UASB; HRT 48 h). Furthermore, the PPB ponds were operated under a light-feast/dark-aerated-famine strategy and fed with the fermented wastewater and molasses from the two UASBs. The best PHA production was obtained during the summer of 2018 and spring of 2019, attaining 34.7 % gPHA/gVSS with a productivity of 0.11 gPHA L-1 day-1 and 36 % gPHA/gVSS with a productivity of 0.14 gPHA L-1 day-1, respectively. Overall, this study showcases the first translation of phototrophic PHA production technology from an artificially illuminated laboratory scale system into a naturally illuminated, outdoor, pilot-scale system. It also addresses relevant process integration aspects with UASBs for pre-fermenting wastewater with molasses, providing a novel operational strategy to achieve photosynthetic PHA production in outdoor full-scale systems.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Lagoas , Esgotos/microbiologia , Bactérias , Reatores Biológicos
2.
Water Res ; 244: 120450, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574626

RESUMO

Phototrophic polyhydroxyalkanoate (PHA) production is an emerging technology for recovering carbon and nutrients from diverse wastewater streams. However, reliable selection methods for the enrichment of PHA accumulating purple phototrophic bacteria (PPB) in phototrophic mixed cultures (PMC) are needed. This research evaluates the impact of ammonia on the selection of a PHA accumulating phototrophic-chemotrophic consortium, towards the enrichment of PHA accumulating PPB. The culture was operated under light-feast/dark-aerated-famine and winter simulated-outdoor conditions (13.2 ± 0.9 °C, transient light, 143.5 W/m2), using real fermented domestic wastewater with molasses as feedstock. Three ammonia supply strategies were assessed: 1) ammonia available only in the light phase, 2) ammonia always present and 3) ammonia available only during the dark-aerated-famine phase. Results showed that the PMC selected under 1) ammonia only in the light and 3) dark-famine ammonia conditions, presented the lowest PHA accumulation capacity during the light period (11.1 % g PHA/g VSS and 10.4 % g PHA/g VSS, respectively). In case 1), the absence of ammonia during the dark-aerated-famine phase did not promote the selection of PHA storing PPB, whereas in case 3) the absence of ammonia during the light period favoured cyanobacteria growth as well as purple sulphur bacteria with increased non-PHA inclusions, resulting in an overall decrease of phototrophic PHA accumulation capacity. The best PHA accumulation performance was obtained with selection under permanent presence of ammonia (case 2), which attained a PHA content of 21.6 % g PHA/g VSS (10.2 Cmmol PHA/L), at a production rate of 0.57 g PHA/L·day, during the light period in the selection reactor. Results in case 2 also showed that feedstock composition impacts the PMC performance, with feedstocks richer in more reduced volatile fatty acids (butyric and valeric acids) decreasing phototrophic performance and leading to acids entering the dark-aerated phase. Nevertheless, the presence of organic carbon in the aerated phase was not detrimental to the system. In fact, it led to the establishment of a phototrophic-chemotrophic consortium that could photosynthetically accumulate a PHA content of 13.2 % g PHA/g VSS (6.7 Cmmol PHA/L) at a production rate of 0.20 g PHA/L·day in the light phase, and was able to further increase that storage up to 18.5 % g PHA/g VSS (11.0 Cmmol PHA/L) at a production rate of 1.35 g PHA/L·day in the dark-aerated period. Furthermore, the light-feast/dark-aerated-famine operation was able to maintain the performance of the selection reactor under winter conditions, unlike non-aerated PMC systems operated under summer conditions, suggesting that night-time aeration coupled with the constant presence of ammonia can contribute to overcoming the seasonal constraints of outdoor operation of PMCs for PHA production.


Assuntos
Reatores Biológicos , Poli-Hidroxialcanoatos , Reatores Biológicos/microbiologia , Amônia , Águas Residuárias , Fome Epidêmica , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...