Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5096-5102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709010

RESUMO

Multivalent-ion battery technologies are increasingly attractive options for meeting diverse energy storage needs. Calcium ion batteries (CIB) are particularly appealing candidates for their earthly abundance, high theoretical volumetric energy density, and relative safety advantages. At present, only a few Ca-ion electrolyte systems are reported to reversibly plate at room temperature: for example, aluminates and borates, including Ca[TPFA]2, where [TPFA]- = [Al(OC(CF3)3)4]- and Ca[B(hfip)4]2, [B(hfip)4]2- = [B(OCH(CF3)2)4]-. Analyzing the structure of these salts reveals a common theme: the prevalent use of a weakly coordinating anion (WCA) consisting of a tetracoordinate aluminum/boron (Al/B) center with fluorinated alkoxides. Leveraging the concept of theory-aided design, we report an innovative, one-pot synthesis of two new calcium-ion electrolyte salts (Ca[Al(tftb)4]2, Ca[Al(hftb)4]2) and two reported salts (Ca[Al(hfip)4]2 and Ca[TPFA]2) where hfip = (-OCH(CF3)2), tftb = (-OC(CF3)(Me)2), hftb = (-OC(CF3)2(Me)), [TPFA]- = [Al(OC(CF3)3)4]-. We also reveal the dependence of Coulombic efficiency on their inherent propensity for cation-anion coordination.

2.
ACS Appl Mater Interfaces ; 16(1): 435-443, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147639

RESUMO

Discovery of stable and efficient electrolytes that are compatible with magnesium metal anodes and high-voltage cathodes is crucial to enabling energy storage technologies that can move beyond existing Li-ion systems. Many promising electrolytes for magnesium anodes have been proposed with chloride-based systems at the forefront; however, Cl-containing electrolytes lack the oxidative stability required by high-voltage cathodes. In this work, we report magnesium trifluoromethanesulfonate (triflate) as a viable coanion for Cl-free, mixed-anion magnesium electrolytes. The addition of triflate to electrolytes containing bis(trifluoromethane sulfonyl) imide (TFSI-) anions yields significantly improved Coulombic efficiency, up to a 100 mV decrease in the plating/stripping overpotential, improved tolerance to trace H2O, and improved oxidative stability (0.35 V improvement compared to that of hybrid TFSI-Cl electrolytes). Based on 19F nuclear magnetic resonance and Raman spectroscopy measurements, we propose that these improvements in performance are driven by the formation of mixed-anion contact ion pairs, where both triflate and TFSI- are coordinated to Mg2+ in the electrolyte bulk. The formation of this mixed-anion magnesium complex is further predicted by the density functional theory to be thermodynamically driven. Collectively, this work outlines the guiding principles for the improved design of next-generation electrolytes for magnesium batteries.

3.
J Am Chem Soc ; 145(22): 12181-12192, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235548

RESUMO

Out-of-equilibrium electrochemical reaction mechanisms are notoriously difficult to characterize. However, such reactions are critical for a range of technological applications. For instance, in metal-ion batteries, spontaneous electrolyte degradation controls electrode passivation and battery cycle life. Here, to improve our ability to elucidate electrochemical reactivity, we for the first time combine computational chemical reaction network (CRN) analysis based on density functional theory (DFT) and differential electrochemical mass spectroscopy (DEMS) to study gas evolution from a model Mg-ion battery electrolyte─magnesium bistriflimide (Mg(TFSI)2) dissolved in diglyme (G2). Automated CRN analysis allows for the facile interpretation of DEMS data, revealing H2O, C2H4, and CH3OH as major products of G2 decomposition. These findings are further explained by identifying elementary mechanisms using DFT. While TFSI- is reactive at Mg electrodes, we find that it does not meaningfully contribute to gas evolution. The combined theoretical-experimental approach developed here provides a means to effectively predict electrolyte decomposition products and pathways when initially unknown.

4.
ACS Appl Mater Interfaces ; 15(20): 25018-25028, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37171170

RESUMO

The Ca2+ solvation structure at the electrolyte/electrode interface is of central importance to understand electroreduction stability and solid-electrolyte interphase (SEI) formation for the novel multivalent Ca battery systems. Using an exemplar electrolyte, the concentration-dependent solvation structure of Ca(BH4)2-tetrahydrofuran on a gold model electrode has been investigated with various electrolyte concentrations via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and X-ray photoelectron spectroscopy (XPS). For the first time, in situ EQCM-D results prove that the prevalent species adsorbed at the interface is CaBH4+ across all concentrations. As the salt concentration increases, the number of BH4- anions associated with Ca2+ increases, and much larger solvated complexes such as CaBH4+·4THF or Ca(BH4)3-·4THF form at the interface at high concentrations prior to Ca plating. Different interfacial chemistries lead to the formation of SEIs with different components demonstrated by XPS. High electrolyte concentrations reduce the solvent decomposition and promote the formation of thick, uniform, and inorganic-rich (i.e., CaO) SEI layers, which contribute to improved Ca plating efficiency and current density in electrochemical measurements.

5.
ACS Appl Mater Interfaces ; 15(5): 6933-6941, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36702613

RESUMO

Energy storage concepts based on multivalent ions, such as calcium, have great potential to become next-generation batteries due to their low cost and comparable cell voltage and energy density to Li-ion batteries. However, the development of Ca batteries is still hindered by the lack of suitable materials that grant a long cycle life. Specific to electrolyte materials, developing a calcium salt that is chemically stable under ambient conditions and enables reversible electrodeposition of Ca is critical. In this work, we use first-principles calculations to study the intrinsic and reductive stability of twelve Ca salts with fluorinated aluminate and borate anions and analyze the decomposition products formed on the metal anode surface that are critical to early-stage solid electrolyte interphase formation. We found anions with significant steric hindrance and a high degree of fluorination are intrinsically less stable and deemed unviable designs for Ca salt. Aluminate salts are generally less reactive with the Ca anode than their borate counterparts, and a high degree of fluorination leads to weaker reductive stability. Calcium fluoride is the most prominent decomposition product on the anode surface, and carbide-like motifs were also found from the decomposition of the designed salts.

6.
Gels ; 8(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35877504

RESUMO

With the commitment to reducing environmental impact, bio-based and biodegradable aerogels may be one approach when looking for greener solutions with similar attributes to current foam-like materials. This study aimed to enhance the mechanical, thermal, and flame-retardant behavior of poly(vinyl alcohol) (PVA) aerogels by adding sodium alginate (SA) and tannic acid (TA). Aerogels were obtained by freeze-drying and post-ion crosslinking through calcium chloride (CaCl2) and boric acid (H3BO3) solutions. The incorporation of TA and SA enhanced the PVA aerogel's mechanical properties, as shown by their high compressive specific moduli, reaching up to a six-fold increase after crosslinking and drying. The PVA/TA/SA aerogels presented a thermal conductivity of 0.043 to 0.046 W/m·K, while crosslinked ones showed higher values (0.049 to 0.060 W/m·K). Under TGA pyrolytic conditions, char layer formation reduced the thermal degradation rate of samples. After crosslinking, a seven-fold decrease in the thermal degradation rate was observed, confirming the high thermal stability of the formed foams. Regarding flammability, aerogels were tested through cone calorimetry. PVA/TA/SA aerogels showed a significant drop in the main parameters, such as the heat release rate (HRR) and the fire growth (FIGRA). The ion crosslinking resulted in a further reduction, confirming the improvement in the fire resistance of the modified compositions.

7.
Dalton Trans ; 46(17): 5518-5521, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991624

RESUMO

Bimetallic effects on stoichiometric ß-hydride elimination and migratory insertion reactions were examined. Bimetallic reaction conditions drove ß-hydride elimination at Cu, while bimetallic C-B elimination occurred in the absence of ß-hydrogens. The inherent migratory insertion chemistry of alkynes at Ni was diverted under bimetallic reaction conditions to favor C-H deprotonation.

8.
Opt Express ; 23(11): A480-92, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072873

RESUMO

Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

9.
Clin Exp Metastasis ; 28(6): 567-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21604185

RESUMO

Fibroblast activation protein-α (FAP) is a cell surface, serine protease of the post-prolyl peptidase family that is expressed in human breast cancer but not in normal tissues. Previously, we showed that FAP expression increased tumor growth rates in a mouse model of human breast cancer. Here the role of the proteolytic activities of FAP in promoting tumor growth, matrix degradation and invasion was investigated. Mammary fat pads of female SCID mice were inoculated with breast cancer cells that express FAP and the mice treated with normal saline or Val-boroPro (talabostat); Glu-boroPro (PT-630); or 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine (LAF-237) that inhibit prolyl peptidases. Other mice were injected with breast cancer cells expressing a catalytically inactive mutant of FAP and did not receive inhibitor treatment. PT-630 and LAF-237 did not slow growth of tumors produced by any of the three cell lines expressing FAP. Talabostat slightly decreased the growth rates of the FAP-expressing tumors but because PT-630 and LAF-237 did not, the growth retardation was likely not related to the inhibition of FAP or the related post-prolyl peptidase dipeptidyl peptidase IV. Breast cancer cells expressing a catalytically inactive mutant of FAP (FAP(S624A)) also produced tumors that grew rapidly. In vitro studies revealed that cells expressing wild type FAP or FAP(S624A) degrade extracellular matrix (ECM) more extensively, accumulate higher levels of matrix metalloproteinase-9 (MMP-9) in conditioned medium, are more invasive in type I collagen gels, and have altered signaling compared to control transfectants that do not express FAP and form slow growing tumors. We conclude that the proteolytic activity of FAP participates in matrix degradation, but other functions of the protein stimulate increased tumor growth.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/patologia , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Invasividade Neoplásica/patologia , Serina Endopeptidases/metabolismo , Animais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Linhagem Celular Tumoral , Proliferação de Células , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases , Feminino , Gelatinases/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA