Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(16): 45473-45497, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800088

RESUMO

The olive oil production is a key economic sector for the producing countries, mainly in the Mediterranean region. However, the worldwide increasing oil production led to the generation of huge amounts of wastes detrimental for the environment. Therefore, efficient and sustainable management of olive industry wastes has recently acquired significant interest in the scientific research community. In the actual world energy context, various studies dealt with the valorization of the solid/liquid waste streams obtained from the discontinuous/continuous extraction of olive oil for energy purposes. The application of waste-to-energy treatments to these effluents can turn them out into an important energy resource. This review article presents the main used oil extraction techniques and their related research developments. The characterization of the generated wastes and the factors behind their bad environmental impacts are highlighted. Relevant research works related to biochemical and thermochemical conversion of olive mill wastes are extensively reviewed and discussed in terms of product yields and composition. A recent update of the studies addressing olive industry waste applications for energy production is also given. This investigation revealed a lack of studies in relation to the hydrothermal processing of olive mill wastes. Despite their suitability for this process (e.g., high moisture content), few papers have investigated the hydrothermal conversion of these waste streams. This scientific gap opens a very interesting research direction, which has to be further investigated.


Assuntos
Meio Ambiente , Olea , Azeite de Oliva , Olea/química , Resíduos Industriais/análise , Resíduos Sólidos
2.
Sci Rep ; 12(1): 20530, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446835

RESUMO

The development of strategies to overcome the shortage of forage due to persistently low rainfall is becoming a central task for animal nutrition in research and practice. In this study, it was investigated how the treatment of straw with NaOH or feed urea in a practicable procedure for modern farms affects rumen fermentation (gas production and greenhouse gas concentration) as well as the digestibility of feed energy and nutrients. For this purpose, the treatments were tested individually and in different proportions in a total mixed ration (TMR) in ruminal batch cultures in vitro and in a digestibility trial with sheep. In order to explain the observed effects at the molecular level, descriptive data from 13C solid state nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were obtained. NaOH treatment of straw increased crude ash (CA), non-fibrous carbohydrates, digestible energy (DE), and metabolizable energy (ME) concentration, whereas the proportion of neutral detergent fibre (aNDFom) and hemicellulose decreased. In urea treated straw, NH3-N and crude protein increased, whereas acid detergent lignin (ADL), DE, and ME decreased. The physically effective fibre (peNDF8) concentration increased in TMR containing 18% of NaOH or urea treated straw (p < 0.01). The application of straw treatments as pure substrates (not as part of a TMR) increased gas production and decelerated ruminal fermentation (p < 0.05). In vitro organic matter digestibility (IVOMD) of the straw (0.31) increased after NaOH (0.51; p < 0.05) and urea treatment (0.41; p > 0.05). As part of a TMR, straw treatments had no distinct effect on gas production or IVOMD. Concentrations of CH4 and CO2 were likewise not affected. Apparent total tract digestibility of aNDFom, acid detergent fibre (ADFom), hemicellulose, and cellulose increased in the TMR by approximately 10% points following NaOH treatment (p < 0.05). The inclusion of urea treated straw did not affect apparent digestibility. Calculated true digestibility of aNDFom was 0.68, 0.74, and 0.79, of ADFom 0.58, 0.57, and 0.65, and of ADL 0.02, 0.13, and 0.08 in TMR including untreated, NaOH treated, and urea treated straw, respectively. 13C NMR and FTIR analyses consistently revealed that the global structure and crystallinity of the carbohydrates (cellulose and hemicellulose) was not altered by treatment and the concentration of lignin was likewise not affected. Depolymerisation of lignin did not occur. However, NMR signals assigned to acetyl groups were significantly altered indicating that straw treatments disrupted linkages between hemicelluloses and lignin. Moreover, the acetates signal was affected. This signal can be assigned to linkages between ferulic acids and hemicelluloses (arabinoxylans). FTIR spectra of straw treatments mainly differed at a wavelength of 1730 cm-1 and 1240 cm-1. Disappearance of the 1730 cm-1 peak suggests removal of hemicelluloses or lignin related compounds by treatment. The disappearance of the lignin peak at 1240 cm-1 could be due to conjugated ketone (phenyl-carbonyl) removal or the removal of ferulic and p-coumaric acid acetyl groups. Both treatments are supposed to release fermentable cell wall components (hemicelluloses) from lignin-associated bonds and as a result, straw fibre can be better fermented in the rumen. This contributes to energy supply and increased fibre digestibility at least in the TMR that contained NaOH treated straw. The alkaline straw treatments probably induced a release of phenolics such as ferulic acid and p-coumaric acid, which can be metabolised in the gut and the liver and metabolites might be excreted with the urine. This could notably contribute to metabolic energy losses.


Assuntos
Hordeum , Animais , Celulose , Detergentes , Fibras na Dieta , Lignina , Ruminantes , Ovinos , Hidróxido de Sódio , Ureia
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119853, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971437

RESUMO

The determination of the abundances of the CHx, C = O and aromatic groups in chondritic Insoluble Organic Matter (IOM) and coals by Infrared (IR) spectroscopy is a challenging issue due to insufficient knowledge on the absorption cross-sections and their sensitivity to the molecular environment. Here, we report a calibration approach based on a 13C synthetic model material whose composition was unambiguously determined by Direct-Pulse/Magic Angle Spinning Nuclear Magnetic Resonance (DP/MAS NMR). Ratios of the cross-sections of the CHx, C = O and aromatic groups have been determined, and the method has been applied to IOM samples extracted from four chondrites as Orgueil (CI), Murchison (CM), Tagish Lake (C2-ungrouped) and EET 92042 (CR2), and to a series of coals. The estimate of the aliphatic to aromatic carbon ratio (nCHx/nAro) in IOM samples from Orgueil, Murchison and Tagish Lake chondrites is in good agreement with Single-Pulse/NMR estimates earlier published, and is lower by a factor of 1.3 in the case of the CR chondrite EET 92042 (but the error bars overlap). In contrast, the aliphatic to carbonyl ratio (nCHx/nC=O) is overestimated for the four chondrites. These discrepancies are likely due to the control of the absorption cross-section of the C = O and C = C bonds by the local molecular environment. Regarding coals, the use of published NMR analyses has brought to light that the integrated cross-section ratio ACHx/AAro varies with the vitrinite reflectance over an order of magnitude. Here as well, the local oxygen speciation plays a critical control in AAro, which decreases with increasing the vitrinite reflectance. We provide an analytical law that links ACHx/AAro and vitrinite reflectance, which will allow the determination of nCHx/nAro for any coal sample, provided its vitrinite reflectance is known.

4.
ChemSusChem ; 13(17): 4633-4648, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515876

RESUMO

Catalytic liquefaction of lignin is an attractive process to produce fuels and chemicals, but it forms a wide range of liquid products from monomers to oligomers. Oligomers represent an important fraction of the products and their analysis is complex. Therefore, rapid characterization methods are needed to screen liquefaction conditions based on the distribution in monomers and oligomers. For this purpose, UV spectroscopy is proposed as a fast and simple method to assess the composition of lignin-derived liquids. UV absorption and fluorescence were studied on various model compounds and liquefaction products. Liquefaction of Soda lignin was conducted in an autoclave, in ethanol and with Pt/C catalyst (H2 , 250 °C, 110 bar). Liquids were sampled at isothermal conditions every 30 min for 4 h. UV fluorescence spectroscopy is related to GC-MS, gel-permeation chromatography (GPC), MALDI-TOF MS, and NMR characterizations. A depolymerization index is proposed from UV spectroscopy to rapidly assess the relative distribution of monomers and oligomers.

5.
ChemSusChem ; 13(17): 4428-4445, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32174017

RESUMO

The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High-resolution mass spectrometry-specifically, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)-offers new opportunities for analysis of oligomers with the assignment of formulae (Cx Hy Oz ) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT-ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT-ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.

6.
Anal Chem ; 90(14): 8379-8386, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29883111

RESUMO

X-ray absorption spectroscopy in the soft X-ray range is used in many research fields to identify the nature of functional groups in organic compounds and carbon materials. However, the concentrations of these functional groups have so far remained difficult to quantify. Using X-ray absorption near edge structure (XANES) spectra of reference materials (polymers and compounds of known molecular composition), we established a correlation between measured optical densities and functional groups concentration. This methodology relies on an alternative method for normalization to the total amount of carbon and for deconvolution of the spectra. It allows precisely quantifying the N/C atomic ratio (σ1 = 0.02 atom %) as well as the concentration of [aromatic + olefinic] groups (σ1 = 3.7 atom %), [ketone + phenol + nitrile] groups (σ1 = 2.2 atom %), [aliphatic] groups (σ1 = 11.2 atom %) and [carboxylic] groups (σ1 = 7.4 atom %). We validated this quantification by comparing with nuclear magnetic resonance data obtained on pyrolized lignin samples. We also provide an easy-to-use python program automating XANES-based quantification of carbon functional group concentrations.

7.
J Environ Qual ; 46(4): 845-854, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783796

RESUMO

Metals can be immobilized on biochars by precipitation with carbonate. The distribution of metal-carbonate phases at the surface of biochars and the conditions of their formation, however, are unknown. Electron microscopy and X-photon spectroscopy were used to characterize carbonate phases in various morphological groups of particles of a wood-derived biochar, both before and after a metal-sorption experiment. Our results showed that the distribution of metals at the surface of biochar particles depended on the corresponding wood tissues and the presence of carbonate phases. Metals were particularly concentrated (i) within calcium carbonate crystals in bark-derived particles, which originated from calcium oxalate crystals formed prior to pyrolysis, and (ii) as new phases formed by the reprecipitation of carbonate on specific tissues of biochar. The formation of biochar carbonate phases and their redistribution by dissolution-precipitation mechanisms may primarily control the localization of metals on biochar particles and the durability of metals immobilization.


Assuntos
Carbonatos/química , Carvão Vegetal , Metais/química , Adsorção , Madeira
8.
Anal Chim Acta ; 969: 26-34, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28411627

RESUMO

The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to CxHyOz with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture.


Assuntos
Pressão Atmosférica , Análise de Fourier , Óleos de Plantas/química , Polifenóis/química , Espectrometria de Massas por Ionização por Electrospray , Misturas Complexas/química , Espectrometria de Massas , Quercus
9.
ChemSusChem ; 9(8): 863-72, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-26990591

RESUMO

Complementary analytical methods have been used to study the effect of potassium on the pyrolysis mechanisms of cellulose and lignocellulosic biomasses. Thermogravimetry, calorimetry, high-temperature (1) H NMR spectroscopy (in situ and real-time analysis of the fluid phase formed during pyrolysis), and water extraction of quenched char followed by size-exclusion chromatography coupled with mass spectrometry have been combined. Potassium impregnated in cellulose suppresses the formation of anhydrosugars, reduces the formation of mobile protons, and gives rise to a mainly exothermic signal. The evolution of mobile protons formed from K-impregnated cellulose has a very similar pattern to the evolution of the mass loss rate. This methodology has been also applied to analyze miscanthus, demineralized miscanthus, miscanthus re-impregnated with potassium after demineralization, raw oak, and Douglas fir. Hydrogen mobility and transfer are of high importance in the mechanisms of biomass pyrolysis.


Assuntos
Biomassa , Potássio/química , Abies , Varredura Diferencial de Calorimetria , Celulose/química , Cromatografia em Gel , Temperatura Alta , Espectrometria de Massas , Poaceae , Espectroscopia de Prótons por Ressonância Magnética , Quercus , Termogravimetria
10.
Anal Chem ; 87(2): 843-7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25521946

RESUMO

Solid state NMR methods are required to analyze biomass as a function of its chemical or biological treatment for biofuels, chemicals, or biochar production. The native polymers network in lignocellulosic biomass and other solid materials, such as coal, coke, or biochar, can hardly be analyzed by liquid state NMR due to their poor swelling ability without chemical modification. A (1)H-(13)C two-dimensional heteronuclear correlation (HETCOR) experiment with frequency-switched Lee-Goldburg (FSLG) irradiation is performed on a high field spectrometer (750 MHz). This method leads to previously unattained resolution for biomass and biochar and offers a unique ability to reveal their chemical composition. The formation of aromatic moieties from carbohydrates and lignin thermal conversion is clearly distinguished. This method can be applied to all other carbonaceous materials.


Assuntos
Biomassa , Carvão Vegetal/química , Ressonância Magnética Nuclear Biomolecular/métodos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...