Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100890, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38566416

RESUMO

Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. TRB4 binds to several thousand sites in the genome, mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes, but, unlike TRB1, it is not enriched at H3K27me3-marked gene bodies. However, TRB4 can physically interact with the catalytic components of PRC2, SWINGER, and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and -independent mechanisms.

2.
Sci Rep ; 12(1): 10941, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768618

RESUMO

Hypomagnesemia is frequently associated with type 2 diabetes and generally correlates with unfavorable disease progression, but the magnesium status in pre-diabetic conditions remains unclear. Here, the magnesium metabolism is scrutinized in a minipig model of obesity and insulin resistance by measuring variations of the metallome-the set of inorganic elements-and the magnesium stable isotope composition in six organs of lean and obese minipigs raised on normal and Western-type diet, respectively. We found that metallomic variations are most generally insensitive to lean or obese phenotypes. The magnesium stable isotope composition of plasma, liver, kidney, and heart in lean minipigs are significantly heavier than in obese minipigs. For both lean and obese minipigs, the magnesium isotope composition of plasma and liver were negatively correlated to clinical phenotypes and plasma lipoproteins concentration as well as positively correlated to hyperinsulinemic-euglycemic clamp output. Because the magnesium isotope composition was not associated to insulin secretion, our results suggest that it is rather sensitive to whole body insulin sensitivity, opening perspectives to better comprehend the onset of insulin-resistant diabetic conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Isótopos , Magnésio , Obesidade/metabolismo , Suínos , Porco Miniatura/metabolismo
3.
Metallomics ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33881548

RESUMO

Lactation and gestation are among the physiological events that trigger the most intense changes in body calcium (Ca) fluxes. Along with the composition of the animal 2021 diet, these events are suspected to impact the Ca isotopic composition of Ca body reservoirs but their dynamics are poorly understood. In this study, we monitored a group of domestic sows across a full reproduction cycle. We collected tissues and fluids (blood, urine, milk, colostrum, umbilical blood, adult and piglet bones) at different steps of gestation and lactation, and analyzed their Ca isotopic compositions (i.e. δ44/42Ca) by means of multi-collector inductively coupled plasma mass spectrometry. Among other results, we report the first observations of Ca isotopic fractionation between maternal and umbilical blood (Δ44/42Caumbilical blood-sow blood = -0.18 ± 0.11‰, n = 3). Our data also highlight that gestation and lactation periods are characterized by small diet-bone Ca isotopic offsets (Δ44/42Cabone-diet = -0.28 ± 0.11‰, n = 3), with 44Ca-enriched blood compositions during nursing (Δ44/42Canursing blood-gestation blood = $+ 0.42{\rm{\,\,}}_{ - 0.12}^{ + 0.11}$‰, n = 3). Under the light of an up-to-date mammalian box model, we explored different scenarios of gestation and lactation Ca fluxes experienced by a sow-like animal. These simulations suggest that gestation changes on body δ44/42Ca values may result from the intensification of Ca absorption by the animal, whereas the production of 44Ca-depleted milk is the main driver for the 44Ca enrichment in blood during lactation. In addition, our results also support that bone mineralization could be associated with a more restricted Ca isotopic fractionation than previously envisioned. Together, these results refine the framework of Ca isotope applications, notably regarding the monitoring of human bone balance and the study of species and ecosystems from the present and the past.


Assuntos
Ração Animal/análise , Líquidos Corporais/metabolismo , Osso e Ossos/química , Isótopos de Cálcio/análise , Cálcio/metabolismo , Lactação , Modelos Biológicos , Animais , Animais Recém-Nascidos , Líquidos Corporais/química , Feminino , Gravidez , Suínos
4.
Rapid Commun Mass Spectrom ; 35(10): e9074, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33634521

RESUMO

RATIONALE: Despite a wide range of potential applications, magnesium (Mg) isotope composition has been so far sparsely measured in reference materials with a biological matrix, which is important for the quality control of the results. We describe a method enabling the chemical separation of Mg in geological and biological materials and the determination of its stable isotope composition. METHODS: Different geological (BHVO-1, BHVO-2, BCR-1, and IAPSO) and biological (SRM-1577c, BCR-383, BCR380R, ERM-CE464, DORM-2, DORM-4, TORT-3, and FBS) reference materials were used to test the performance of a new sample preparation procedure for Mg isotopic analysis. The procedure consisted of a simple three-stage elution method to separate Mg from the matrix. Mg isotopic analyses were performed in two different laboratories and with three different multi-collector inductively coupled plasma mass spectrometry instruments. RESULTS: The biological reference materials show a wide range of δ26 Mg values (relative to DSM3 standard), spanning over 2‰, from 0.52 ± 0.29‰ (2SD, n = 7) in bovine liver (SRM-1577c) to -1.45 ± 0.20‰ (2SD, n = 5) in tuna fish (ERM-CE464), with an external precision of 0.03‰ (2SD, n = 85). CONCLUSIONS: This study indicates that isotopic measurements of Mg in biological reference materials show good performance, with the results being within the accepted range. We confirmed that δ26 Mg values in liver are the most positive of all biological materials reported so far.


Assuntos
Isótopos/análise , Magnésio/análise , Espectrometria de Massas/métodos , Animais , Bovinos , Fígado/química , Carne/análise , Atum
5.
Talanta ; 219: 121244, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887135

RESUMO

The determination of rare earth elements (REEs) and Y in carbonates can be complicated by low REE abundances and the presence of significant amounts of Ba resulting in problematic interferences when analysed by ICP-MS. We describe here a novel ion-exchange method using the DGA resin (TODGA), combined with addition of a Tm spike, which allows the separation of the REEs+Y as a whole prior to analysis using an Element XR ICP-MS. This method was validated with results obtained on three different reference carbonate materials (CAL-S, JLs-1 and BEAN, an in-house standard), yielding reproducibility levels better than 3% (RSD) in most cases. This new separation scheme is particularly well suited for carbonate samples having very low REE contents, but could be equally applied to various rock types and organic-rich sample matrices whenever quantitative Ba removal is required.

6.
Plant J ; 101(1): 71-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31463991

RESUMO

Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Schizosaccharomyces/metabolismo
7.
Sci Rep ; 9(1): 8015, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142781

RESUMO

Gadolinium-based contrast agents (GBCAs), routinely used in magnetic resonance imaging (MRI), end up directly in coastal seawaters where gadolinium concentrations are now increasing. Because many aquatic species could be sensitive to this new pollution, we have evaluated the possibility of using shellfish to assess its importance. Gadolinium excesses recorded by scallop shells collected in Bay of Brest (Brittany, France) for more than 30 years do not reflect the overall consumption in GBCAs, but are largely controlled by one of them, the gadopentetate dimeglumine. Although its use has been greatly reduced in Europe over the last ten years, gadolinium excesses are still measured in shells. Thus, some gadolinium derived from other GBCAs is bioavailable and could have an impact on marine wildlife.


Assuntos
Meios de Contraste/análise , Monitoramento Ambiental/métodos , Gadolínio DTPA/análise , Pectinidae/química , Água do Mar/química , Poluentes Químicos da Água/análise , Exoesqueleto/química , Animais , Meios de Contraste/química , Meios de Contraste/toxicidade , Poluição Ambiental/prevenção & controle , França , Gadolínio DTPA/toxicidade , Imageamento por Ressonância Magnética/métodos , Pectinidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
8.
New Phytol ; 221(1): 385-398, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897636

RESUMO

Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Heterocromatina/genética , Histonas/genética , Lisina/metabolismo , Mutação , Plantas Geneticamente Modificadas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Plântula/genética , Plântula/metabolismo
9.
Nucleic Acids Res ; 46(6): 3019-3033, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518237

RESUMO

Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.


Assuntos
Arabidopsis/genética , Epigênese Genética , Epigenômica/métodos , Genes de RNAr/genética , Genoma de Planta/genética , RNA Ribossômico 5S/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Translocação Genética
10.
Plant Cell ; 29(7): 1773-1793, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684426

RESUMO

Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis thaliana Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Together, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histonas/metabolismo , Hidrolases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Hidrolases/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Filogenia , Plantas Geneticamente Modificadas , Proteína Nuclear Ligada ao X/genética
11.
Plant J ; 81(5): 707-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600486

RESUMO

Chromatin organization is essential for coordinated gene expression, genome stability, and inheritance of epigenetic information. The main components involved in chromatin assembly are specific complexes such as Chromatin Assembly Factor 1 (CAF-1) and Histone Regulator (HIR), which deposit histones in a DNA synthesis-dependent or -independent manner, respectively. Here, we characterize the role of the plant orthologs Histone Regulator A (HIRA), Ubinuclein (UBN) and Calcineurin Binding protein 1 (CABIN1), which constitute the HIR complex. Arabidopsis loss-of-function mutants for the various subunits of the complex are viable, but hira mutants show reduced fertility. We show that loss of HIRA reduces extractable histone H3 protein levels and decreases nucleosome occupancy at both actively transcribed genes and heterochromatic regions. Concomitantly, HIRA contributes to maintenance of silencing of pericentromeric repeats and certain transposons. A genetic analysis based on crosses between mutants deficient in subunits of the CAF-1 and HIR complexes showed that simultaneous loss of both the CAF-1 and HIR histone H3 chaperone complexes severely affects plant survival, growth and reproductive development. Our results suggest that HIRA partially rescues impaired histone deposition in fas mutants to preserve nucleosome occupancy, implying plasticity in histone variant interaction and deposition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Complexos Multiproteicos , Mutação , Nucleossomos/genética , Fatores de Processamento de RNA , Plântula/genética , Plântula/metabolismo
12.
Plant Biotechnol J ; 11(3): 305-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23094946

RESUMO

Low transformation efficiency and high background of non-targeted events are major constraints to gene targeting in plants. We demonstrate here applicability in maize of a system that reduces the constraint from transformation efficiency. The system requires regenerable transformants in which all of the following elements are stably integrated in the genome: (i) donor DNA with the gene of interest adjacent to sequence for repair of a defective selectable marker, (ii) sequence encoding a rare-cutting endonuclease such as I-SceI, (iii) a target locus (TL) comprising the defective selectable marker and I-SceI cleavage site. Typically, this requires additional markers for the integration of the donor and target sequences, which may be assembled through cross-pollination of separate transformants. Inducible expression of I-SceI then cleaves the TL and facilitates homologous recombination, which is assayed by selection for the repaired marker. We used bar and gfp markers to identify assembled transformants, a dexamethasone-inducible I-SceI::GR protein, and selection for recombination events that restored an intact nptII. Applying this strategy to callus permitted the selection of recombination into the TL at a frequency of 0.085% per extracted immature embryo (29% of recombinants). Our results also indicate that excision of the donor locus (DL) through the use of flanking I-SceI cleavage sites may be unnecessary, and a source of unwanted repair events at the DL. The system allows production, from each assembled transformant, of many cells that subsequently can be treated to induce gene targeting. This may facilitate gene targeting in plant species for which transformation efficiencies are otherwise limiting.


Assuntos
Marcação de Genes/métodos , Técnicas de Transferência de Genes , Zea mays/genética , Dexametasona , Canamicina , Técnicas de Embriogênese Somática de Plantas , Recombinação Genética
13.
Curr Genet ; 40(5): 345-54, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11935225

RESUMO

We studied a mutant strain of Drosophila subobscura, in which 80% of the mitochondrial genomes (mtDNA) have lost over 30% of the coding region. The mutation is stable and is transmitted identically to offspring. The putative role of the mutant nuclear genome in the production of rearranged mtDNA was investigated using reciprocal crosses, to place the mitochondria of the wild strain in a mutant nuclear context. Nested PCR was used to screen for rearrangements in different regions of mtDNA; and rearrangements were detected in some individuals from the F6 generation. The frequency of these deleted mtDNAs then increased progressively in the population; and they were present in nearly all individuals in the F11 generation. They were not transmissible. Direct repeats were present at the deletion boundaries. These mutated genomes disappeared on reversion to a wild-type nuclear genome. Deletions were detected in a very small fraction of the wild population (0.7% of individuals). The mutant nuclear genome therefore does not promote a particular deletion but increases the frequency of different mtDNA rearrangements. The potential involvement of different candidate nuclear genes is discussed.


Assuntos
DNA Mitocondrial/genética , Drosophila/genética , Genoma , Mutação , Animais , Recombinação Genética
14.
Eur J Biochem ; 269(3): 998-1005, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11846802

RESUMO

Most (78%) mitochondrial genomes in the studied mutant strain of Drosophila subobscura have undergone a large-scale deletion (5 kb) in the coding region. This mutation is stable, and is transmitted intact to the offspring. This animal model of major rearrangements of mitochondrial genomes can be used to analyse the involvement of the nuclear genome in the production and maintenance of these rearrangements. Successive backcrosses between mutant strain females and wild-type males yield a biphasic change in heteroplasmy level: (a) a 5% decrease in mutated genomes per generation (from 78 to 55%), until the nuclear genome is virtually replaced by the wild-type genome (seven to eight crosses); and (b) a continuous decrease of 0.5% per generation when the nuclear context is completely wild-type. In parallel with these changes, NADH dehydrogenase activity, which is halved in the mutant strain (five subunits of this complex are affected by the mutation), gradually increases and stabilizes near the wild-type activity. A return to a nuclear context is accompanied by the opposite phenomena: progressive increase in heteroplasmy level and stabilization at the value seen in the wild-type strain and a decrease in the activity of complex I. These results indicate that the nuclear genome plays an important role in the control of heteroplasmy level and probably in the production of rearranged genomes.


Assuntos
Núcleo Celular/genética , Drosophila/genética , Genoma , Mitocôndrias/genética , Mutação , Animais , Evolução Biológica , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Complexo I de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...