Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(2): e619-e627, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689897

RESUMO

Highly structured, molecularly imprinted polymer (MIP) networks for copper(II) ion sequestration have been realized using the additive manufacturing technology. Photopolymerizable formulations with acrylic functional monomers and two different porogens (water and methanol) in different ratios were studied to produce emulsions with 50 vol% of the internal phase. The results of morphological characterization indicate that all MIPs have cauliflower-like multiscale structures that change as a function of the solvent combination and fabrication process. X-ray fluorescence microscopy maps presented a layered structure and homogeneous distribution of copper in the printed MIP. Copper(II) ion adsorption-desorption tests were performed on MIPs prepared using a three-dimensional (3D) printing approach and MIPs prepared by bulk polymerization. Results indicate that the 3D printed MIP is able to absorb copper up to ten times more efficiently than the nonprinted one and the printed MIP with 100% water content has the highest imprint recognition.

2.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666966

RESUMO

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Assuntos
Lignina , Madeira , Biomassa , Celulose
3.
3D Print Addit Manuf ; 8(3): 193-200, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654660

RESUMO

A biobased composite material with heat-triggered shape memory ability was successfully formulated for three-dimensional (3D) printing. It was produced from cellulose nanocrystals and cellulose micro-powder particles within a bioderived thermally cured polyester matrix based on glycerol, citric acid, and sebacic acid. The effect of curing duration on the material's shape memory behavior was quantified by using two thermo-mechanical approaches to measure recovery: (1) displacement in three-point bending and (2) angular recovery from a beam bent at 90° in a single cantilever setup. Extending curing duration increased the material's glass-transition temperature from -26°C after 6 h to 13°C after 72 h of curing. Fourier-transform infrared spectroscopy confirmed the associated progressive conversion of functional groups consistent with polyester formation. Slow recovery rates and low levels of shape recovery (22-70%) were found for samples cured less than 24 h. Those results also indicated a high dependence on the measurement approach. In contrast, samples cured for 48 and 72 h exhibited faster recovery rates, a significantly higher recovery percentage (90-100%) and were less sensitive to the measurement approach. Results demonstrated that once a sufficient curing threshold was achieved, additional curing time could be used to tune the material glass-transition temperature and create heat-triggered 3D-printed products.

4.
Front Chem ; 7: 735, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737608

RESUMO

Additive manufacturing or 3D printing has the potential to displace some of the current manufacturing techniques and is particularly attractive if local renewable waste resources can be used. In this study, rice husk, and wood powders were compounded in polylactic acid (PLA) by twin screw extrusion to produce filaments for fused-deposition modeling 3D printing. The biomasses were characterized in terms of physical features (e.g., particle size, density) and chemical compositions (e.g., solid state nuclear magnetic resonance, ash content). The two biomasses were found to have a different impact on the rheological behavior of the compounds and the extrusion process overall stability. When comparing the complex viscosity of neat PLA to the biomass/PLA compounds, the integration of wood powder increased the complex viscosity of the compound, whereas the integration of rice husk powder decreased it. This significant difference in rheological behavior was attributed to the higher specific surface area (and chemical reactivity) of the rice husk particles and the presence of silica in rice husks compared to the wood powder. Color variations were also observed. Despite the biomass filler and rheological behavior differences, the mechanical properties of the 3D printed samples were similar and predominantly affected by the printing direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...