Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Tissue Eng ; 14: 20417314231219813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143931

RESUMO

Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.

2.
J Periodontal Res ; 58(6): 1272-1280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787434

RESUMO

OBJECTIVE: The aim of this study was to investigate metabolomics markers in the saliva of patients with periodontal health, gingivitis and periodontitis. BACKGROUND: The use of metabolomics for diagnosing and monitoring periodontitis is promising. Although several metabolites have been reported to be altered by inflammation, few studies have examined metabolomics in saliva collected from patients with different periodontal phenotypes. METHODS: Saliva samples collected from a total of 63 patients were analysed by nuclear magnetic resonance (NMR) followed by ELISA for interleukin (IL)-1ß. The patient sample, well-characterised clinically, included periodontal health (n = 8), gingivitis (n = 19) and periodontitis (n = 36) cases, all non-smokers and not diabetic. RESULTS: Periodontal diagnosis (healthy/gingivitis/periodontitis) was not associated with any salivary metabolites in this exploratory study. Periodontal staging showed nominal associations with acetoin (p = .030) and citrulline (p = .047). Among other investigated variables, the use of systemic antibiotics in the previous 3 months was associated with higher values of the amino acids taurine, glycine and ornithine (p = .002, p = .05 and p = .005, respectively, at linear regression adjusted for age, gender, ethnicity, body mass index and staging). CONCLUSION: While periodontal staging was marginally associated with some salivary metabolites, other factors such as systemic antibiotic use may have a much more profound effect on the microbial metabolites in saliva. Metabolomics in periodontal disease is still an underresearched area that requires further observational studies on large cohorts of patients, aiming to obtain data to be used for clinical translation.


Assuntos
Gengivite , Doenças Periodontais , Periodontite , Humanos , Saliva/química , Periodontite/metabolismo , Gengivite/metabolismo , Doenças Periodontais/metabolismo , Biomarcadores/metabolismo
3.
J Pers Med ; 13(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511736

RESUMO

This study aimed to compare the metabolic profile of unstimulated (US) and stimulated (SS) saliva samples from pregnant women with/without obesity and periodontitis. Ninety-six pregnant women were divided into: obesity + periodontitis (OP = 20); obesity/no periodontitis (OWP = 27); normal BMI + periodontitis (NP = 20); and normal BMI/no periodontitis (NWP = 29). US and SS samples were collected by expectoration and chewing of sterilized parafilm gum, respectively, and samples were individually analyzed by Proton Nuclear Magnetic Resonance (1H-NMR). Univariate (t test and correlations) and multivariate (Principal Component Analysis-PCA, and Partial Least Square-Discriminant Analysis-PLS-DA with Variance Importance Projection-VIP scores) and Metabolite Set Enrichment Analysis were done (p < 0.05). Metabolites commonly found in all groups in elevated concentration in US samples were 5-Aminopentoate, Acetic acid, Butyric acid, Propionic acid, Pyruvic acid, and Succinic acid. They were mainly related to the butyrate metabolism, citric acid cycle, amino sugar metabolism, fatty acids biosynthesis, pyruvate metabolism, glutamate metabolism, and Warburg effect. Metabolites commonly found in all groups that were in elevated concentration in SS samples were Citrulline, Fumaric acid, Histidine, N-acetyl glutamine, N-acetylneuraminic acid, para-hydroxyphenylacetic acid, Proline, Tyrosine. Although some differences were found between unstimulated and stimulated saliva samples from pregnant women with/without obesity and periodontitis, stimulated saliva collection seems adequate, demonstrating similar metabolic pathways to unstimulated saliva samples when groups are compared.

4.
Nat Commun ; 14(1): 2740, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217519

RESUMO

Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adesão Celular , Movimento Celular/fisiologia , Miosina Tipo II/metabolismo , Fosforilação Oxidativa , Fosforilação
5.
Sci Rep ; 13(1): 1273, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690651

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Proteínas Nucleares/metabolismo , Meduloblastoma/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia
6.
J Hepatol ; 78(1): 180-190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995127

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has been associated with mild cerebral dysfunction and cognitive decline, although the exact pathophysiological mechanism remains ambiguous. Using a diet-induced model of NAFLD and monocarboxylate transporter-1 (Mct1+/-) haploinsufficient mice, which resist high-fat diet-induced hepatic steatosis, we investigated the hypothesis that NAFLD leads to an encephalopathy by altering cognition, behaviour, and cerebral physiology. We also proposed that global MCT1 downregulation offers cerebral protection. METHODS: Behavioural tests were performed in mice following 16 weeks of control diet (normal chow) or high-fat diet with high fructose/glucose in water. Tissue oxygenation, cerebrovascular reactivity, and cerebral blood volume were monitored under anaesthesia by multispectral optoacoustic tomography and optical fluorescence. Cortical mitochondrial oxygen consumption and respiratory capacities were measured using ex vivo high-resolution respirometry. Microglial and astrocytic changes were evaluated by immunofluorescence and 3D reconstructions. Body composition was assessed using EchoMRI, and liver steatosis was confirmed by histology. RESULTS: NAFLD concomitant with obesity is associated with anxiety- and depression-related behaviour. Low-grade brain tissue hypoxia was observed, likely attributed to the low-grade brain inflammation and decreased cerebral blood volume. It is also accompanied by microglial and astrocytic morphological and metabolic alterations (higher oxygen consumption), suggesting the early stages of an obesogenic diet-induced encephalopathy. Mct1 haploinsufficient mice, despite fat accumulation in adipose tissue, were protected from NAFLD and associated cerebral alterations. CONCLUSIONS: This study provides evidence of compromised brain health in obesity and NAFLD, emphasising the importance of the liver-brain axis. The protective effect of Mct1 haploinsufficiency points to this protein as a novel therapeutic target for preventing and/or treating NAFLD and the associated brain dysfunction. IMPACT AND IMPLICATIONS: This study is focused on unravelling the pathophysiological mechanism by which cerebral dysfunction and cognitive decline occurs during NAFLD and exploring the potential of monocarboxylate transporter-1 (MCT1) as a novel preventive or therapeutic target. Our findings point to NAFLD as a serious health risk and its adverse impact on the brain as a potential global health system and economic burden. These results highlight the utility of Mct1 transgenic mice as a model for NAFLD and associated brain dysfunction and call for systematic screening by physicians for early signs of psychological symptoms, and an awareness by individuals at risk of these potential neurological effects. This study is expected to bring attention to the need for early diagnosis and treatment of NAFLD, while having a direct impact on policies worldwide regarding the health risk associated with NAFLD, and its prevention and treatment.


Assuntos
Encefalopatias , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Obesidade/metabolismo , Camundongos Transgênicos , Encefalopatias/metabolismo , Encefalopatias/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
7.
Liver Int ; 42(10): 2274-2282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635305

RESUMO

BACKGROUND AND AIMS: Cirrhosis is associated with changes in gut microbiota in both saliva and stool. The relative linkage patterns of stool versus saliva microbiota with systemic metabolomics are unclear and may differ across countries. We hypothesized that stool microbiota have greater linkages with plasma metabolites than saliva microbiota, which may depend on country of origin. METHODS: Age-balanced controls and outpatient patients with cirrhosis, compensated and decompensated, from the USA and Mexico (MX) underwent plasma collection and dietary recall. Plasma metabolomics were analysed using nuclear magnetic resonance spectroscopy. Microbiota in stool and saliva samples were analysed using 16S rRNA analyses. Correlation network differences between both saliva and stool gut microbiota and plasma metabolites were compared between subject groupings and within/between countries. RESULTS: A total of 313 age-balanced subjects-135 USA (47 control, 48 compensated and 40 decompensated) and 178 MX (71 control, 56 compensated and 51 decompensated)-were enrolled. Cirrhosis severity, including lactulose and rifaximin use, were comparable. Plasma metabolites differed with advancing cirrhosis, between countries and according to 90-day hospitalizations. Correlation networks demonstrated more microbiome-metabolite linkages in stool compared to saliva in both populations, although there were no salivary correlation metrics across decompensated subjects in either country. Stool Lactobacillus showed a positive correlation to plasma lactate in decompensated cirrhosis from MX but not USA. CONCLUSIONS: Stool microbiota were more extensively linked with systemic metabolites than were saliva microbiota, irrespective of cirrhosis severity and country. These changes were more prominent in decompensated cirrhosis and were centred around plasma lactate, which might reflect the interaction of diet and lactulose therapy.


Assuntos
Lactulose , Microbiota , Fezes , Humanos , Lactatos , Cirrose Hepática/complicações , RNA Ribossômico 16S/genética
8.
Int J Hyg Environ Health ; 237: 113803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34517159

RESUMO

BACKGROUND: Inflammation, oxidative stress and reduced cardiopulmonary function following exposure to ultrafine particles (UFP) from airports has been reported but the biological pathways underlying these toxicological endpoints remain to be explored. Urinary metabolomics offers a robust method by which changes in cellular pathway activity can be characterised following environmental exposures. OBJECTIVE: We assessed the impact of short-term exposures to UFP from different sources at a major airport on the human urinary metabolome. METHODS: 21 healthy, non-smoking volunteers (aged 19-27 years) were repeatedly (2-5 visits) exposed for 5h to ambient air at Amsterdam Airport Schiphol, while performing intermittent, moderate exercise. Pre- to-post exposure changes in urinary metabolite concentrations were assessed via 1H NMR spectroscopy and related to total and source-specific particle number concentrations (PNC) using linear mixed effects models. RESULTS: Total PNC at the exposure site was on average, 53,500 particles/cm3 (range 10,500-173,200) and associated with significant reductions in urinary taurine (-0.262 AU, 95% CI: -0.507 to -0.020) and dimethylamine concentrations (-0.021 AU, 95% CI: -0.040 to -0.067). Aviation UFP exposure accounted for these changes, with the reductions in taurine and dimethylamine associating with UFP produced during both aircraft landing and take-off. Significant reductions in pyroglutamate concentration were also associated with aviation UFP specifically, (-0.005 AU, 95% CI: -0.010 - <0.000) again, with contributions from both landing and take-off UFP exposure. While non-aviation UFPs induced small changes to the urinary metabolome, their effects did not significantly impact the overall response to airport UFP exposure. DISCUSSION: Following short-term exposures at a major airport, aviation-related UFP caused the greatest changes to the urinary metabolome. These were consistent with a heightened antioxidant response and altered nitric oxide synthesis. Although some of these responses could be adaptive, they appeared after short-term exposures in healthy adults. Further study is required to determine whether long-term exposures induce injurious effects.


Assuntos
Poluentes Atmosféricos , Aeroportos , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Humanos , Metaboloma , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
9.
Liver Int ; 40(2): 416-427, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544308

RESUMO

BACKGROUND & AIMS: Dietary changes can modulate gut microbiota and interact with cirrhosis. Our prior study demonstrated that microbial diversity was higher in cirrhotics from Turkish vs the USA, which was associated with lower risk of 90-day hospitalizations. We aimed to define gut microbial functional and metabolomic changes to increase insight into benefits of the Mediterranean compared to Western diets. METHODS: In all, 139 Turkish (46 controls/50 compensated/43 decompensated) and 157 American subjects (48 controls/59 compensated/50 decompensated) were studied. Turkish subjects consumed a modified Mediterranean diet with daily fermented milk intake, whereas Americans consumed a Western diet. Predicted gut microbial functionalities and plasma metabolomics were compared between/within countries. Correlation network differences between microbiota and metabolites in cirrhotics from Turkey vs the USA were evaluated. RESULTS: Predicted microbial function showed lower amino acid, bioenergetics and lipid pathways, with functions related to vitamin B, glycan, xenobiotic metabolism, DNA/RNA synthesis, in cirrhotics from Turkey compared to the USA. Plasma metabolomics demonstrated higher relative lactate levels in Turkey vs the USA. The metabolite changes in decompensated cirrhosis, compared to controls, showed similar trends in Turkey and the USA, with reduced lipids and phosphocholines. Phosphocholines were significantly lower in patients hospitalized in 90 days (P = .03). Correlation networks in cirrhotics demonstrated linkage differences between beneficial taxa, Blautia and Oscillispira, and lactate and unsaturated lipids, in Turkey compared to American patients. CONCLUSIONS: A modified Mediterranean diet was associated with altered plasma metabolomics and beneficially alters microbiota functionality and correlations compared to Western diet in cirrhosis. These altered diet-microbial interactions could potentially affect the 90-day hospitalization risk.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fibrose , Humanos , Cirrose Hepática , Metabolômica
10.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31751317

RESUMO

BACKGROUNDHepatic encephalopathy (HE) is associated with poor outcomes. A prior randomized, pilot trial demonstrated safety after oral capsular fecal microbial transplant (FMT) in HE, with favorable changes in microbial composition and cognition. However, microbial functional changes are unclear. The aim of this study was to determine the effect of FMT on the gut-brain axis compared with placebo, using microbial function based on bile acids (BAs), inflammation (serum IL-6, LPS-binding protein [LBP]), and their association with EncephalApp.METHODSTwenty cirrhotic patients were randomized 1:1 into groups that received 1-time FMT capsules from a donor enriched in Lachnospiraceae and Ruminococcaceae or placebo capsules, with 5-month follow-up for safety outcomes. Stool microbiota and BA; serum IL-6, BA, and LBP; and EncephalApp were analyzed at baseline and 4 weeks after FMT/placebo. Correlation networks among microbiota, BAs, EncephalApp, IL-6, and LBP were performed before/after FMT.RESULTSFMT-assigned participants had 1 HE recurrence and 2 unrelated infections. Six placebo-assigned participants developed negative outcomes. FMT, but not placebo, was associated with reduced serum IL-6 and LBP and improved EncephalApp. FMT-assigned participants demonstrated higher deconjugation and secondary BA formation in feces and serum compared with baseline. No change was seen in placebo. Correlation networks showed greater complexity after FMT compared with baseline. Beneficial taxa, such as Ruminococcaceae, Verrucomicrobiaceae, and Lachnospiraceae, were correlated with cognitive improvement and decrease in inflammation after FMT. Fecal/serum secondary/primary ratios and PiCRUST secondary BA pathways did not increase in participants who developed poor outcomes.CONCLUSIONGut microbial function in cirrhosis is beneficially affected by capsular FMT, with improved inflammation and cognition. Lower secondary BAs in FMT recipients could select for participants who develop negative outcomes.TRIAL REGISTRATIONClinicaltrials.gov NCT03152188.FUNDINGNational Center for Advancing Translational Sciences NIH grant R21TR002024, VA Merit Review grant 2I0CX001076, the United Kingdom National Institute for Health Research Biomedical Facility at Imperial College London, the British Heart Foundation, Wellcome Trust, and King's College London.


Assuntos
Cognição/fisiologia , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Encefalopatia Hepática/terapia , Cirrose Hepática/terapia , Adulto , Idoso , Cápsulas , Fezes/microbiologia , Feminino , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/microbiologia , Encefalopatia Hepática/fisiopatologia , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/microbiologia , Cirrose Hepática/fisiopatologia , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Resultado do Tratamento , Reino Unido , Adulto Jovem
11.
Methods Mol Biol ; 2037: 69-95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31463840

RESUMO

We present an overview of 13C-based NMR metabolomics. At first glance, the low sensitivity of 13C relative to 1H NMR might seem like too great an obstacle to use this approach. However, there are several advantages to 13C NMR, whether samples can be isotopically enriched or not. At natural abundance, peaks are sharp and largely resolved, and peak frequencies are more stable to pH and other sample conditions. Statistical approaches can be used to obtain C-C and C-H correlation maps, which greatly aid in compound identification. With 13C isotopic enrichment, other experiments are possible, including both 13C-J-RES and INADEQUATE, which can be used for de novo identification of metabolites not in databases.NMR instrumentation and software has significantly improved, and probes are now commercially available that can record useful natural abundance 1D 13C spectra from real metabolomics samples in 2 h or less. Probe technology continues to improve, and the next generation should be even better. Combined with new methods of simultaneous data acquisition, which allows for two or more 1D or 2D NMR experiments to be collected using multiple receivers, very rich datasets can be collected in a reasonable amount of time that should improve metabolomics data analysis and compound identification.


Assuntos
Isótopos de Carbono/análise , Guias como Assunto , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Software , Bases de Dados Factuais , Humanos
15.
Anal Chem ; 89(17): 8582-8588, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28737383

RESUMO

NMR metabolomics are primarily conducted with 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat for water suppression and Carr-Purcell-Meiboom-Gill (CPMG) presat as a T2 filter to remove macromolecule signals. Others pulse sequences exist for these two objectives but are not often used in metabolomics studies, because they are less robust or unknown to the NMR metabolomics community. However, recent improvements on alternative pulse sequences provide attractive alternatives to 1D NOESY presat and CPMG presat. We focus this perspective on PURGE, a water suppression technique, and PROJECT presat, a T2 filter. These two pulse sequences, when optimized, performed at least on par with 1D NOESY presat and CPMG presat, if not better. These pulse sequences were tested on common samples for metabolomics, human plasma, and urine.


Assuntos
Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Análise Química do Sangue/métodos , Humanos , Urina/química
16.
Magn Reson Chem ; 53(11): 913-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26053155

RESUMO

NMR is a powerful tool for the analysis of complex mixtures and the identification of individual components. Two-dimensional (2D) NMR potentially offers a wealth of information, but resolution is often sacrificed in order to contain experimental times. We explore the use of non-uniform sampling (NUS) to increase substantially the resolution of 2D NMR spectra of complex mixtures of small molecules, with no increase in experimental time. Two common pulse sequences for metabolomics applications are analysed, HSQC and TOCSY. Specific attention is paid to sensitivity in resolution-enhanced NUS spectra, using the signal-to-maximum-noise ratio as a metric. With a careful choice of sampling schedule and reconstruction algorithm, resolution in the (13) C dimension for HSQC is increased by a factor of at least 32, with no loss in sensitivity and no spurious peaks. For TOCSY, multiplets can be resolved in the indirect dimension in a reasonable experimental time. These properties should increase the usefulness of 2D NMR for metabolomics applications by, for example, increasing the chances of metabolite identification.

17.
Rapid Commun Mass Spectrom ; 27(12): 1345-53, 2013 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23681812

RESUMO

RATIONALE: In isotope tracer experiments used in nutritional studies, it is frequently desirable both to determine the (15)N/(14)N ratios of target compounds and to quantify these compounds. This report shows how this can be achieved in a single chromatographic run for protein amino acids using an isotope ratio mass spectrometer. METHODS: Protein hydrolysis by acidic digestion was used to release amino acids, which were then derivatized as their N-pivaloyl-O-isopropyl esters. Suitable conditions for sample preparation were established for both hair and milk proteins. The N-pivaloyl-O-isopropyl esters of amino acids were separated by gas chromatography (GC) on a 60 m ZB-WAX column linked via a combustion interface to an isotope ratio mass spectrometer. The (15)N/(14)N ratios were obtained from the m/z 28, 29 and 30 peak intensities and the quantities from the Area All (Vs) integrated peak areas. RESULTS: It is shown from a five-point calibration curve that both parameters can be measured reliably within the range of 1.0 to 2.0 mg/mL for the major amino acids derived from the hydrolysis of human maternal milk or hair samples. The method was validated in terms of inter-day and inter-user repeatability for both parameters for 14 amino acids. The amino acid percentage composition showed a good correlation with literature values. The method was applied to determine the variability in a population of lactating mothers and their infants. CONCLUSIONS: It has been established that δ(15)N values can be simultaneously determined for a complex mixture of amino acids at variable concentrations. It is shown that the percentage composition obtained correlates well with that obtained by calculation from the protein composition or from literature values. This procedure should provide a significant saving in analysis time, especially in those cases where the GC run-time is necessarily long. It allows the satisfactory determination of the variation within a sample population.


Assuntos
Aminoácidos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cabelo/química , Leite Humano/química , Isótopos de Nitrogênio/análise , Proteínas/química , Adulto , Feminino , Humanos , Lactente , Lactação , Masculino , Adulto Jovem
18.
Anal Chem ; 84(24): 10831-7, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23170813

RESUMO

Two-dimensional nuclear magnetic resonance (2D NMR) forms a powerful tool for the quantitative analysis of complex mixtures such as samples of metabolic relevance. However, its use for quantitative purposes is far from being trivial, not only because of the associated experiment time, but also due to its subsequent high sensitivity to hardware instabilities affecting its precision. In this paper, an alternative approach is considered to measure absolute metabolite concentrations in complex mixtures with a high precision in a reasonable time. It is based on a "multi-scan single shot" (M3S) strategy, which is derived from the ultrafast 2D NMR methodology. First, the analytical performance of this methodology is compared to the one of conventional 2D NMR. 2D correlation spectroscopy (COSY) spectra are obtained in 10 min on model metabolic mixtures, with a precision in the 1-4% range (versus 5-18% for the conventional approach). The M3S approach also shows a better linearity than its conventional counterpart. It ensures that accurate quantitative results can be obtained provided that a calibration procedure is carried out. The M3S COSY approach is then applied to measure the absolute metabolite concentration in three breast cancer cell line extracts, relying on a standard addition protocol. M3S COSY spectra of such extracts are recorded in 20 min and give access to the absolute concentration of 14 major metabolites, showing significant differences between cell lines.


Assuntos
Neoplasias da Mama/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Animais , Bovinos , Feminino , Humanos , Células MCF-7 , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...