Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(48): 54073-54080, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36401833

RESUMO

The development of nanoscale composites with hierarchical architecture and complex anisotropies enables the fabrication of new classes of devices. Stretchable strain sensors have been developed in the past for applications in various fields such as wearable electronics and soft robotics, yet the sensing capacities of most of these sensors are independent of the direction of deformation. In the present work, we report on the preparation of a direction-sensitive strain sensor using the anisotropic optical properties of a monolayer of oriented plasmonic 1D nano-objects. Grazing incidence spraying (GIS) is used for depositing a monolayer of in-plane aligned silver nanowires with a controlled density on a deformable and transparent substrate. Using the selective excitation of transverse and longitudinal localized plasmon resonance modes of silver nanowires by polarized UV-visible-NIR spectroscopy, we show that the macroscopic anisotropic properties of the monolayer upon stretching are highly dependent on the stretching direction and light polarization. Measuring the polarized optical properties of the anisotropic thin films upon stretching thus allow for retrieving both the local strain and the direction of the deformation using a simple model.

2.
ACS Nano ; 14(12): 16525-16534, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790330

RESUMO

Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.

3.
Philos Trans A Math Phys Eng Sci ; 377(2138): 20180265, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30967061

RESUMO

The surfaces of animals, plants and abiotic structures are not only important for organismal survival, but they have also inspired countless biomimetic and industrial applications. Additionally, the surfaces of animals and plants exhibit an unprecedented level of diversity, and animals often move on the surface of plants. Replicating these surfaces offers a number of advantages, such as preserving a surface that is likely to degrade over time, controlling for non-structural aspects of surfaces, such as compliance and chemistry, and being able to produce large areas of a small surface. In this paper, we compare three replication techniques among a number of species of plants, a technical surface and a rock. We then use two model parameters (cross-covariance function ratio and relative topography difference) to develop a unique method for quantitatively evaluating the quality of the replication. Finally, we outline future directions that can employ highly accurate surface replications, including ecological and evolutionary studies, biomechanical experiments, industrial applications and improving haptic properties of bioinspired surfaces. The recent advances associated with surface replication and imaging technology have formed a foundation on which to incorporate surface information into biological sciences and to improve industrial and biomimetic applications. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.


Assuntos
Evolução Biológica , Biomimética/métodos , Ecologia/métodos , Animais , Plantas , Propriedades de Superfície
4.
R Soc Open Sci ; 5(4): 172132, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765666

RESUMO

The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect-plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5-100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities.

5.
Nat Mater ; 17(6): 523-527, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713038

RESUMO

Responsive materials1-3 have been used to generate structures with built-in complex geometries4-6, linear actuators7-9 and microswimmers10-12. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible 13 . Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.

6.
Biomed Mater ; 13(1): 015015, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855425

RESUMO

For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine)2-L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine)2-L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine)2-L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the properties of the deposited biomaterials.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Hidrogéis/química , Metais/química , Desenho de Prótese/métodos , Células 3T3 , Adesivos , Animais , Bivalves , Adesão Celular , Di-Hidroxifenilalanina/química , Fibroblastos/química , Fibroblastos/metabolismo , Gelatina/química , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Camundongos , Peptídeos/química , Próteses e Implantes , Quinonas/química , Transglutaminases/química
7.
Langmuir ; 33(9): 2420-2426, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28198631

RESUMO

The formation of polydopamine composite membranes at the water/air interface using different chemical strategies is reported. The use of either small molecules (urea, pyrocatechol) or polymers paves the way to understand which kind of compounds can be used for the formation of PDA-composite free-standing membranes produced at the water/air interface. On the basis of these screening results, we have found that alginate grafted with catechol groups allows the formation of robust free-standing films with asymmetric composition, stimuli-responsiveness, and self-healing properties. The stickiness of these membranes depends on the relative humidity, and its adhesion behavior on PDMS was characterized using the JKR method. Thus, alginate-catechol polydopamine films appear as a new class of PDA composites, mechanically robust through covalent cross-linking and based on fully biocompatible constituting partners. These results open the door to potential applications in the biomedical field.


Assuntos
Alginatos/química , Catecóis/química , Indóis/química , Polímeros/química , Água/química , Ar , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Tamanho da Partícula , Propriedades de Superfície
8.
Langmuir ; 32(46): 12190-12201, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27643958

RESUMO

The mechanical activity of cardiomyocytes is the result of a process called excitation-contraction coupling (ECC). A membrane depolarization wave induces a transient cytosolic calcium concentration increase that triggers activation of calcium-sensitive contractile proteins, leading to cell contraction and force generation. An experimental setup capable of acquiring simultaneously all ECC features would have an enormous impact on cardiac drug development and disease study. In this work, we develop a microengineered elastomeric substrate with tailor-made surface chemistry to measure simultaneously the uniaxial contraction force and the calcium transients generated by single human cardiomyocytes in vitro. Microreplication followed by photocuring is used to generate an array consisting of elastomeric micropillars. A second photochemical process is employed to spatially control the surface chemistry of the elastomeric pillar. As result, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be confined in rectangular cell-adhesive areas, which induce cell elongation and promote suspended cell anchoring between two adjacent micropillars. In this end-to-end conformation, confocal fluorescence microscopy allows simultaneous detection of calcium transients and micropillar deflection induced by a single-cell uniaxial contraction force. Computational finite elements modeling (FEM) and 3D reconstruction of the cell-pillar interface allow force quantification. The platform is used to follow calcium dynamics and contraction force evolution in hESC-CMs cultures over the course of several weeks. Our results show how a biomaterial-based platform can be a versatile tool for in vitro assaying of cardiac functional properties of single-cell human cardiomyocytes, with applications in both in vitro developmental studies and drug screening on cardiac cultures.


Assuntos
Cálcio/química , Elastômeros , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/citologia , Diferenciação Celular , Células Cultivadas , Humanos , Fenômenos Mecânicos , Microtecnologia
9.
Langmuir ; 32(31): 7765-73, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27408983

RESUMO

We have considered in this work the Wilhelmy plate tensiometer to characterize the wetting properties of two model surface textures: (i) a series of three superhydrophobic micropillared surfaces and (ii) a series of two highly water-repellent surfaces microtextured with a femtosecond laser. The wetting forces obtained on these surfaces with the Wilhelmy plate technique were compared to the contact angles of water droplets measured with the sessile drop technique and to the bouncing behavior of water droplets recorded at a high frame rate. We showed that it is possible with this technique to directly measure triple-line anchoring forces that are not accessible with the commonly used sessile drop technique. In addition, we have demonstrated on the basis of the bouncing drop experiments wetting transitions induced by the specific test conditions associated with the Wilhelmy plate tensiometer for the two series of textured surfaces. Finally, the tensiometer technique is proposed as an alternative test for characterizing the wetting properties of highly liquid-repellent surface, especially under immersion conditions.

10.
Eur Phys J E Soft Matter ; 38(6): 56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26087914

RESUMO

By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

11.
Langmuir ; 30(31): 9378-83, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25026476

RESUMO

In this work, we discuss quantitatively two basic relations describing the wetting behavior of microtopographically patterned substrates. Each of them contains scale invariant topographical parameters that can be easily expressed onto substrates decorated with specifically designed micropillars. The first relation discussed in this paper describes the contact angle hysteresis of water droplets in the Cassie-Baxter regime. It is shown that the energy at the origin of the hysteresis, that has to be overcome for moving the triple line, can be invariantly expressed for hexagonal pillars by varying the pillars width and interpillar distance. Identical contact angle hystereses are thus measured on substrates expressing this scale invariance for pillar widths and interpillar distances ranging from 4 to 128 µm. The second relation we discuss concerns the faceting of droplets spreading on microtopographically patterned substrates. It is shown in this case that the condition for pinning of the triple line can be fulfilled by simultaneously varying the height of the pillars and the interpillar distance, leading to faceted droplets of similar morphologies. The invariance of these two wetting phenomena resulting from the simultaneous and homothetic variation of topographical parameters is demonstrated for a wide range of pattern dimensions. Our results show that either of those two wetting behaviors can be simply achieved by the proper choice of a dimensionless ratio of topographical length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...