Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 104(2): 213-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24345408

RESUMO

Mealybugs (Hemiptera: Pseudococcidae) are important pests for crops worldwide. Different species, cryptic taxa under the same species name or even populations within a species can differ in biological characteristics, such as phenology, resistance to insecticides, virus transmission and susceptibility to natural enemies. Therefore, their management efficacy depends on their accurate identification. Microsatellite genetic markers are efficient in revealing the fine-scale taxonomic status of insects, both at inter- and intra-specific level. Despite their potential uses, microsatellites have been developed only for one mealybug species so far. Hence, it is unclear whether microsatellites may be useful to assess mealybug population differentiation and structuring. In this work, we tested the feasibility of developing microsatellite markers in mealybugs by: (i) producing and characterizing microsatellite DNA libraries for three species: Pseudococcus viburni, Pseudococcus comstocki and Heliococcus bohemicus, and (ii) by developing and testing markers for Ps. viburni. The obtained libraries contained balanced percentages of dinucleotide (ranging from 15 to 25%) and trinucleotide (from 5 to 17%) motifs. The marker setup for Ps. viburni was successful, although 70% of the primers initially tested were discarded for a lack of polymorphism. Finally, 25 markers were combined in two multiplex polymerase chain reactions with 21 displaying no evidence of deviation from Hardy-Weinberg equilibrium. Ps. viburni markers were tested on one population from France and one from Chile. The markers revealed a significant genetic differentiation between the two populations with an Fst estimate of 0.266.


Assuntos
Hemípteros/genética , Repetições de Microssatélites , Animais , Biblioteca Gênica
2.
Phytopathology ; 102(7): 717-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22439861

RESUMO

Grapevine leafroll disease is caused by grapevine leafroll-associated viruses (GLRaVs). These viruses are common in vineyards worldwide and often associated with vitiviruses that are involved in the rugose wood complex of grapevine. Ten mealybug species are known as vectors of one or several of these grapevine viruses, including the apple mealybug Phenacoccus aceris which is widespread in Holarctic regions and able to transmit Grapevine leafroll-associated virus-1 and -3 (GLRaV-1 and -3). Our aim was to characterize the transmission features of leafroll viruses by Phenacoccus aceris in order to better understand the contribution of this mealybug to leafroll epidemics. Results showed that Phenacoccus aceris is able to transmit GLRaV-1, -3, -4, -5, -6, and -9 to grapevine but not GLRaV-7. This is the first report of GLRaV-6 transmission by a mealybug. Also, for the first time it was shown that Phenacoccus aceris could vector vitiviruses Grapevine virus A (GVA) and Grapevine virus B (GVB). First instar nymphs were the most efficient stage in transmitting GLRaV-1, -3, and GVA. This research sheds light on the transmission biology of grapevine viruses by Phenacoccus aceris and represents a step forward to leafroll disease management.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Vitis/virologia , Animais , Interações Hospedeiro-Patógeno , Ninfa/virologia , Doenças das Plantas/virologia , Vitis/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...