Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 20(9): e13447, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34355491

RESUMO

The expression of BRAF-V600E triggers oncogene-induced senescence in normal cells and is implicated in the development of several cancers including melanoma. Here, we report that cardioglycosides such as ouabain are potent senolytics in BRAF senescence. Sensitization by ATP1A1 knockdown and protection by supplemental potassium showed that senolysis by ouabain was mediated by the Na,K-ATPase pump. Both ion transport inhibition and signal transduction result from cardioglycosides binding to Na,K-ATPase. An inhibitor of the pump that does not trigger signaling was not senolytic despite blocking ion transport, demonstrating that signal transduction is required for senolysis. Ouabain triggered the activation of Src, p38, Akt, and Erk in BRAF-senescent cells, and signaling inhibitors prevented cell death. The expression of BRAF-V600E increased ER stress and autophagy in BRAF-senescent cells and sensitized the cell to senolysis by ouabain. Ouabain inhibited autophagy flux, which was restored by signaling inhibitors. Consequently, we identified autophagy inhibitor chloroquine as a novel senolytic in BRAF senescence based on the mode of action of cardioglycosides. Our work underlies the interest of characterizing the mechanisms of senolytics to discover novel compounds and identifies the endoplasmic reticulum stress-autophagy tandem as a new vulnerability in BRAF senescence that can be exploited for the development of further senolytic strategies.


Assuntos
Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Ouabaína/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
2.
Nat Commun ; 10(1): 3566, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395877

RESUMO

Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.


Assuntos
Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/isolamento & purificação , Ataxia de Friedreich/patologia , Ferro/metabolismo , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Zinco/metabolismo , Frataxina
3.
J Biol Chem ; 288(43): 31177-91, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24019521

RESUMO

In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Proteínas Mitocondriais/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Biossíntese de Proteínas/fisiologia , Estabilidade Proteica , Ubiquitina-Proteína Ligases/genética
4.
Mol Biol Cell ; 22(18): 3431-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795389

RESUMO

Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein-Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose , Receptores ErbB/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/genética , Cães , Técnicas de Silenciamento de Genes , Humanos , Proteínas com Domínio LIM/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab de Ligação ao GTP/metabolismo
5.
Glia ; 54(3): 183-92, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16807899

RESUMO

Microglial cells are central to brain immunity and intervene in many human neurological diseases. The aim of this study was to develop a convenient cellular model for human microglial cells, suitable for HIV studies. Microglia derive from the hematogenous myelomonocytic lineage, possibly as a distinct subpopulation but in any case able to invade the CNS, proliferate, and differentiate into ameboid and then ramified microglia in the adult life. We thus attempted to derive microglia-like cells from human monocytes. When cultured with astrocyte-conditioned medium (ACM), monocytes acquired a ramified morphology, typical of microglia. They overexpressed substance P and the calcium binding protein Iba-1 and dimly expressed class II MHC, three characteristics of microglial cells. Moreover, they also expressed a potassium inward rectifier current, another microglia-specific feature. These monocyte-derived microglia-like cells (MDMi) were CD4(+)/CD14(+), evocative of an activated microglia phenotype. When treated with lipopolysaccharide (LPS), MDMi lost their overexpression of substance P, which returned to untreated monocyte-derived macrophage (MDM) level. Compared with MDM, MDMi expressed higher CD4 but lower CCR5 levels; they could be infected by HIV-1(BaL), but produced less virus progeny than MDM did. This model of human microglia may be an interesting alternative to primary microglia for large scale in vitro HIV studies and may help to better understand HIV-associated microgliosis and chronic inflammation in the brain.


Assuntos
Macrófagos/citologia , Microglia/citologia , Monócitos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Divisão Celular , HIV-1 , Humanos , Macrófagos/fisiologia , Microglia/fisiologia , Microglia/virologia , Monócitos/fisiologia , Técnicas de Patch-Clamp , Valores de Referência
6.
J Neuropathol Exp Neurol ; 63(10): 1058-71, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15535133

RESUMO

The mechanisms of neuronal apoptosis in prion diseases are unclear. Experimental studies suggest that it may result from 2 associated mechanisms: glutamate-mediated excitotoxicity and oxidative stress. Recent studies showed that activated macrophages/microglia (AMM) express excitatory amino acid transporters (EAATs) in HIV infection, suggesting that they may play a neuroprotective role by clearing extra-cellular glutamate and producing anti-oxidant glutathione. In order to test this hypothesis in prion diseases, samples from cerebral cortex, striatum, thalamus, and cerebellum from 14 patients with Creutzfeldt-Jakob disease (8 sporadic, 2 familial, 2 iatrogenic, and 2 variant), and 4 with fatal familial insomnia (3 homozygous Met/Met at codon 129 of the PRNP gene, 1 heterozygous Met/Val), and 3 controls were immunostained for EAAT-1, GFAP, HLA-DR, CD68, IL-1, caspase 3, and PrP. In prion diseases, EAAT-1 immunopositivity was found in affected areas. Only AMM, interstitial, perivascular, perineuronal (sometimes around apoptotic neurons), or close to reactive astrocytes, expressed EAAT-1. Astrocyte EAAT-1 expression was scarcely detectable in controls and was not detected in prion disease cases. The proportion of AMM expressing EAAT-1 did not correlate with the severity of neuronal apoptosis, spongiosis, astrocytosis, microgliosis, or PrP deposition, but only with disease duration. Occasional EAAT-1 expressing AMM were found in patients with short survival, whereas diffuse EAAT-1 expression by AMM was observed in cases with long survival (24 to 33 months) that most often were heterozygous for Met/Val at codon 129 of the PRNP gene. Our findings suggest that AMM may develop a partial neuroprotective function in long-lasting prion diseases, although it does not seem to efficiently prevent neurological and neuropathological deterioration. Whether this neuroprotective function of microglia is the cause or the effect of longer survival needs to be clarified.


Assuntos
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Insônia Familiar Fatal/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Adulto , Idoso , Amiloide/genética , Encéfalo/patologia , Estudos de Casos e Controles , Criança , Códon , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Heterozigoto , Humanos , Insônia Familiar Fatal/genética , Insônia Familiar Fatal/patologia , Masculino , Metionina , Pessoa de Meia-Idade , Proteínas Priônicas , Príons , Precursores de Proteínas/genética , Índice de Gravidade de Doença , Fatores de Tempo , Valina
7.
Ann Pathol ; 24(1): 31-44, 2004 Feb.
Artigo em Francês | MEDLINE | ID: mdl-15192535

RESUMO

Microglial cells and macrophages are the only cells within the central nervous system, in which productive HIV infection has been unquestionably demonstrated. Those cells play a key role in the origin of the neuronal dysfunction underlying HIV-related cognitive disorders. The neurotoxicity of the cells is both direct, related to HIV proteins, and indirect, through the release by activated macrophages and microglial cells (AMM) of multiple neurotoxic factors. The mechanisms of neuronal damage, the final irreversible stage of which is neuronal apoptosis, are only partly understood but appear to involve oxidative stress and glutamate-receptor mediated toxicity. On the other hand, recent experimental in vitro and in vivo studies, and neuropathological studies in HIV infected patients at different stages of the disease, tend to show that AMM express excitatory amino acid transporters (EAAT) suggesting that in addition to their neurotoxic properties, they also have a neuroprotective role by clearing extra-cellular glutamate and producing antioxidant glutathione. This neuroprotective role could counteract, at least in the early stages of the disease, the neurotoxicity of AMM explaining the discrepancy between the conspicuous microglial activation at that stage and the absence of cognitive disorder, neuronal loss and neuronal apoptosis. It could also explain the regression of the cognitive disorders in some patients who received highly active antiretroviral treatment.


Assuntos
Infecções por HIV/imunologia , Microglia/imunologia , Animais , Transportador 1 de Aminoácido Excitatório/fisiologia , Transportador 2 de Aminoácido Excitatório/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Macrófagos/imunologia , Estresse Oxidativo/fisiologia , Receptores de Glutamato/fisiologia
8.
Microbes Infect ; 6(2): 157-63, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14998513

RESUMO

Changes in the fine balance between matrix metalloproteinases and their tissue inhibitors, which drives extracellular matrix turnover, may be critical to central nervous system inflammation in HIV infection as well as in neurotoxicity. Although they do not produce virus when infected by HIV, astrocytes may be directly affected by the virion, because some viral proteins are known to transduce signaling in brain cells and are also sensitive to the major proinflammatory cytokine TNFalpha. We therefore studied the effects of HIV and TNFalpha on MMP-2, MMP-9 and their inhibitors, TIMP-1 and TIMP-2, in astrocytes, by zymography and ELISA, respectively, or by RT-PCR for both of them. HIV slightly increased the production of pro-MMP-2 and pro-MMP-9 by astrocytes, in a dose-dependent manner. TNFalpha strongly induced pro-MMP-9. TIMP-1 and TIMP-2 levels were affected only slightly, if at all, by HIV and TNFalpha. Thus, astrocyte/HIV contact may lead to extracellular matrix activation, which may be strongly amplified by the inflammatory response. Our data strongly suggest that, besides their physiological production of MMP-2, astrocytes would be a major source of MMP-9 in the inflamed brain.


Assuntos
Astrócitos/efeitos dos fármacos , HIV/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Astrócitos/enzimologia , Astrócitos/virologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Sistemas Neurossecretores/fisiologia , Inibidor Tecidual de Metaloproteinase-1/genética , Vírion/fisiologia
9.
Brain Pathol ; 13(2): 211-22, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12744474

RESUMO

It is now widely accepted that neuronal damage in HIV infection results mainly from microglial activation and involves apoptosis, oxidative stress and glutamate-mediated neurotoxicity. Glutamate toxicity acts via 2 distinct pathways: an excitotoxic one in which glutamate receptors are hyperactivated, and an oxidative one in which cystine uptake is inhibited, resulting in glutathione depletion and oxidative stress. A number of studies show that astrocytes normally take up glutamate, keeping extracellular glutamate concentration low in the brain and preventing excitotoxicity. This action is inhibited in HIV infection, probably due to the effects of inflammatory mediators and viral proteins. Other in vitro studies as well as in vivo experiments in rodents following mechanical stimulation, show that activated microglia and brain macrophages express high affinity glutamate transporters. These data have been confirmed in chronic inflammation of the brain, particularly in SIV infection, where activated microglia and brain macrophages also express glutamine synthetase. Recent studies in humans with HIV infection show that activated microglia and brain macrophages express the glutamate transporter EAAT-1 and that expression varies according to the disease stage. This suggests that, besides their recognized neurotoxic properties in HIV infection, these cells also have a neuroprotective function, and may partly make up for the inhibited astrocytic function, at least temporarily. This hypothesis might explain the discrepancy between microglial activation which occurs early in the disease, and neuronal apoptosis and neuronal loss which is a late event. In this review article, we discuss the possible neuroprotective and neurotrophic roles of activated microglia and macrophages that may be generated by the expression of high affinity glutamate transporters and glutamine synthetase, 2 major effectors of glial glutamate metabolism, and the implications for HIV-induced neuronal dysfunction, the underlying cause of HIV dementia.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/genética , Glutamato-Amônia Ligase/genética , Infecções por HIV/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Simportadores/genética , Complexo AIDS Demência/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática , Infecções por HIV/imunologia , Infecções por HIV/patologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Fármacos Neuroprotetores/metabolismo , Ratos
10.
J Neuropathol Exp Neurol ; 62(5): 475-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12769187

RESUMO

Recent experimental studies showed that activated macrophages/microglia (AMM) express excitatory amino acid transporters (EAATs), suggesting that, in addition to their neurotoxic properties, they also have a neuroprotective role by clearing extracellular glutamate and producing antioxidant glutathione. To test this hypothesis in human, the brain of 12 HIV-positive patients and 3 controls were immunostained for EAAT-1. EAAT-1 was expressed by AMM in all HIV-infected cases but not in HIV-negative controls. Expression varied according to the disease stage. In 5 cases with active HIV-encephalitis (HIVE), AMM strongly expressed EAAT-1 in the white matter and basal ganglia, analogous to HLA-DR and CD68 expression. There was weaker expression in the cortex and perineuronal microglial cells were not involved. In a case with "burnt out" HIVE following highly active antiretroviral therapy (HAART), EAAT-1 expression was mild, identical to that of HLA-DR and CD68 in the white matter and cortex and involved perineuronal microglial cells. In 3 AIDS patients without HIVE and in 3 pre-AIDS cases, EAAT-1 expression in the white matter was weaker than HLA-DR and CD68 expression; there was stronger correlation in the gray matter where perineuronal microglial cells were stained predominantly. Our findings in humans tend to confirm that AMM, particularly perineuronal microglial cells, play a neuroprotective role in the early stages of HIV infection and, possibly, following treatment. This is in keeping with the early microglial activation seen in pre-AIDS cases, and the late occurrence of neuronal loss. It may also explain the reversible cognitive disorders following treatment in some cases.


Assuntos
Encéfalo/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Infecções por HIV/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Fármacos Neuroprotetores/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Adulto , Idoso , Biomarcadores , Encéfalo/citologia , Encéfalo/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Infecções por HIV/patologia , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...