Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 206: 163-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26164201

RESUMO

To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.


Assuntos
Poluentes Atmosféricos/toxicidade , Florestas , Modelos Teóricos , Ozônio/toxicidade , Árvores/crescimento & desenvolvimento , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Biomassa , Mudança Climática , Relação Dose-Resposta a Droga , Europa (Continente) , Modelos Lineares , Ozônio/análise , Ozônio/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Estações do Ano , Solo/química , Especificidade da Espécie , Árvores/efeitos dos fármacos , Árvores/metabolismo , Água/análise , Água/metabolismo
2.
Environ Pollut ; 160(1): 57-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22035926

RESUMO

Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development.


Assuntos
Poluição do Ar , Mudança Climática , Ecossistema , Pesquisa/tendências , Árvores/crescimento & desenvolvimento , Monitoramento Ambiental
3.
Plant J ; 64(4): 563-76, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20822503

RESUMO

In plant cells, anion channels and transporters are essential for key functions such as nutrition, resistance to biotic or abiotic stresses, and ion homeostasis. In Arabidopsis, members of the chloride channel (CLC) family located in intracellular organelles have been shown to be required for nitrate homeostasis or pH adjustment, and previous results indicated that AtCLCc is involved in nitrate accumulation. We investigated new physiological functions of this CLC member in Arabidopsis. Here we report that AtCLCc is strongly expressed in guard cells and pollen and more weakly in roots. Use of an AtCLCc:GFP fusion revealed localization to the tonoplast. Disruption of the AtCLCc gene by a T-DNA insertion in four independent lines affected physiological responses that are directly related to the movement of chloride across the tonoplast membrane. Opening of clcc stomata was reduced in response to light, and ABA treatment failed to induce their closure, whereas application of KNO3 but not KCl restored stomatal opening. clcc mutant plants were hypersensitive to NaCl treatment when grown on soil, and to NaCl and KCl in vitro, confirming the chloride dependence of the phenotype. These phenotypes were associated with modifications of chloride content in both guard cells and roots. These data demonstrate that AtCLCc is essential for stomatal movement and salt tolerance by regulating chloride homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cloreto/metabolismo , Estômatos de Plantas/fisiologia , Tolerância ao Sal , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canais de Cloreto/genética , Regulação da Expressão Gênica de Plantas , Luz , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , Pólen/metabolismo , Salinidade , Cloreto de Sódio , Regulação para Cima
4.
Plant Biol (Stuttg) ; 11 Suppl 1: 35-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19778366

RESUMO

The tropospheric level of the phytotoxic air pollutant ozone has increased considerably during the last century, and is expected to continue to rise. Long-term exposure of higher plants to low ozone concentrations affects biochemical processes prior to any visible symptoms of injury. The current critical level of ozone used to determine the threshold for damaging plants (biomass loss) is still based on the seasonal sum of the external concentration above 40 nl.l(-1) (AOT40). Taking into account stomatal conductance and the internal capacity of leaf defences, a more relevant concept should be based upon the 'effective ozone flux', the balance between the stomatal flux and the intensity of cellular detoxification. The large decrease in the Rubisco/PEPc ratio reflects photosynthetic damage from ozone, and a large increase in activity of cytosolic PEPc, which allows increased malate production. Although the direct detoxification of ozone (and ROS produced from its decomposition) is carried out primarily by cell wall ascorbate, the existing level of this antioxidant is not sufficient to indicate the degree of cell sensitivity. In order to regenerate ascorbate, NAD(P)H is needed as the primary supplier of reducing power. It is hypothesised that increased activity of the catabolic pathways and associated shunts (glucose-6-phosphate dehydrogenase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme) can provide sufficient NAD(P)H to maintain intracellular detoxification. Thus, measurement of the level of redox power would contribute to determination of the 'effective ozone dose', serving ultimately to improve the ozone risk index for higher plants.


Assuntos
Ozônio/toxicidade , Plantas/efeitos dos fármacos , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , NADP/metabolismo , Oxidantes Fotoquímicos/toxicidade , Oxirredução/efeitos dos fármacos
5.
Environ Pollut ; 146(3): 608-16, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16938368

RESUMO

Published ozone exposure-response relationships from experimental studies with young trees performed at different sites across Europe were re-analysed in order to test the performance of ozone exposure indices based on AOTX (Accumulated exposure Over a Threshold of X nmol mol(-1)) and AF(st)Y (Accumulated Stomatal Flux above a threshold of Y nmol m(-2) s(-1)). AF(st)1.6 was superior, as compared to AOT40, for explaining biomass reductions, when ozone sensitive species with differing leaf morphology were included in the analysis, while this was not the case for less sensitive species. A re-analysis of data with young black cherry trees, subject to different irrigation regimes, indicated that leaf visible injuries were more strongly related to the estimated stomatal ozone uptake, as compared to the ozone concentration in the air. Experimental data with different clones of silver birch indicated that leaf thickness was also an important factor influencing the development of ozone induced leaf visible injury.


Assuntos
Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Árvores/efeitos dos fármacos , Betula/efeitos dos fármacos , Betula/metabolismo , Biomassa , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Oxidantes Fotoquímicos/farmacocinética , Ozônio/farmacocinética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prunus/efeitos dos fármacos , Prunus/metabolismo , Medição de Risco/métodos , Árvores/metabolismo
6.
Plant Biol (Stuttg) ; 8(1): 11-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16435265

RESUMO

Temperature increase and altered precipitation are facets of "Global Change", along with enhanced tropospheric ozone (O3) and CO2 levels. Both O3 and drought may curtail the probably limited capacity of "extra" carbon fixation in forest trees under a CO2-enriched atmosphere. In view of the exceptionally dry year of 2003 in Central Europe, this mini-review highlights O3/drought interactions in biochemical and ecophysiological responses of trees. Such interactions appear to vary, depending on the genotype and factorial scenarios. If O3 perturbs stomatal regulation, tolerance to both drought and persisting O3 exposure may be weakened, although drought preceding O3 stress may "harden" against O3 impact. Stomatal closure under drought may shield trees against O3 uptake and injury, which indeed was the case in 2003. However, the trees' "tuning" between O3 uptake and defence capacity is crucial in stress tolerance. Defence may be constrained due to limited carbon fixation, which results from the trade-off with O3 exclusion upon stomatal closure. Drought may cause a stronger reduction in stem growth than does ozone on an annual basis.


Assuntos
Ozônio/farmacologia , Árvores/fisiologia , Água/fisiologia , Adaptação Fisiológica , Ozônio/química
7.
J Exp Bot ; 56(418): 2003-10, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15967780

RESUMO

Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.


Assuntos
Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Populus/fisiologia , Ásia , Pressão Hidrostática , Folhas de Planta/ultraestrutura , Raízes de Plantas/ultraestrutura , Brotos de Planta/ultraestrutura , Populus/ultraestrutura , Pressão , Especificidade da Espécie , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA