Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38527311

RESUMO

Chlamydia psittaci is an avian bacterial pathogen that can cause atypical pneumonia in humans via zoonotic transmission. It is a Gram-negative intracellular bacterium that proliferates inside membrane bound inclusions in the cytoplasm of living eukaryotic cells. The study of such cells with C. psittaci inside without destroying them poses a significant challenge. We demonstrated in this work the utility of a combined multitool approach to analyze such complex samples. Atomic force microscopy was applied to obtain high-resolution images of the surface of infected cells upon entrance of bacteria. Atomic force microscopy scans revealed the morphological changes of the cell membrane of Chlamydia infected cells such as changes in roughness of cell membrane and the presence of micro vesicles. 4Pi Raman microscopy was used to image and probe the molecular composition of intracellular bacteria inside intact cells. Information about the structure of the inclusion produced by C. psittaci was obtained and it was found to have a similar molecular fingerprint as that of an intracellular lipid droplet but with less proteins and unsaturated lipids. The presented approach demonstrates complementarity of various microscopy-based approaches and might be useful for characterization of intracellular bacteria.

2.
Nat Commun ; 13(1): 4360, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896536

RESUMO

Ultra-violet (UV) light has still a limited scope in optical microscopy despite its potential advantages over visible light in terms of optical resolution and of interaction with a wide variety of biological molecules. The main challenge is to control in a robust, compact and cost-effective way UV light beams at the level of a single optical spatial mode and concomitantly to minimize the light propagation loss. To tackle this challenge, we present here photonic integrated circuits made of aluminum oxide thin layers that are compatible with both UV light and high-volume manufacturing. These photonic circuits designed at a wavelength of 360 nm enable super-resolved structured illumination microscopy with conventional wide-field microscopes and without modifying the usual protocol for handling the object to be imaged. As a biological application, we show that our UV photonic chips enable to image the autofluorescence of yeast cells and reveal features unresolved with standard wide-field microscopy.


Assuntos
Iluminação , Microscopia , Luz , Microscopia/métodos , Fótons
3.
Opt Express ; 27(16): 23067-23079, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510589

RESUMO

Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively.

4.
Opt Lett ; 44(4): 855-858, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768004

RESUMO

Optical beam steering is key for optical communications, laser mapping (lidar), and medical imaging. For these applications, integrated photonics is an enabling technology that can provide miniaturized, lighter, lower-cost, and more power-efficient systems. However, common integrated photonic devices are too power demanding. Here, we experimentally demonstrate, for the first time, to the best of our knowledge, beam steering by microelectromechanical (MEMS) actuation of a suspended silicon photonic waveguide grating. Our device shows up to 5.6° beam steering with 20 V actuation and power consumption below the µW level, i.e., more than five orders of magnitude lower power consumption than previous thermo-optic tuning methods. The novel combination of MEMS with integrated photonics presented in this work lays ground for the next generation of power-efficient optical beam steering systems.

5.
Sci Adv ; 3(9): e1701151, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28929137

RESUMO

Structural colors enable the creation of a spectrum of nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (~1.74) melanin cores and low-RI (~1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics.

6.
Materials (Basel) ; 10(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28772499

RESUMO

Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN) nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL) is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10-9 cm-1·sr-1, at a Stokes shift of 200 cm-1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

7.
Interface Focus ; 6(4): 20160015, 2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499842

RESUMO

We review an on-chip approach for spontaneous Raman spectroscopy and surface-enhanced Raman spectroscopy based on evanescent excitation of the analyte as well as evanescent collection of the Raman signal using complementary metal oxide semiconductor (CMOS)-compatible single mode waveguides. The signal is either directly collected from the analyte molecules or via plasmonic nanoantennas integrated on top of the waveguides. Flexibility in the design of the geometry of the waveguide, and/or the geometry of the antennas, enables optimization of the collection efficiency. Furthermore, the sensor can be integrated with additional functionality (sources, detectors, spectrometers) on the same chip. In this paper, the basic theoretical concepts are introduced to identify the key design parameters, and some proof-of-concept experimental results are reviewed.

8.
Opt Express ; 23(21): 27391-404, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480401

RESUMO

We develop and experimentally verify a theoretical model for the total efficiency η0 of evanescent excitation and subsequent collection of spontaneous Raman signals by the fundamental quasi-TE and quasi-TM modes of a generic photonic channel waveguide. Single-mode silicon nitride (Si3N4) slot and strip waveguides of different dimensions are used in the experimental study. Our theoretical model is validated by the correspondence between the experimental and theoretical absolute values within the experimental errors. We extend our theoretical model to silicon-on-insulator (SOI) and titanium dioxide (TiO2) channel waveguides and study η0 as a function of index contrast, polarization of the mode and the geometry of the waveguides. We report nearly 2.5 (4 and 5) times larger η0 for the fundamental quasi-TM mode when compared to η0 for the fundamental quasi-TE mode of a typical Si3N4 (TiO2 and SOI) strip waveguide. η0 for the fundamental quasi-TE mode of a typical Si3N4, (TiO2 and SOI) slot waveguide is about 7 (22 and 90) times larger when compared to η0 for the fundamental quasi-TE mode of a strip waveguide of the similar dimensions. We attribute the observed enhancement to the higher electric field discontinuity present in high index contrast waveguides.

9.
Opt Express ; 23(3): 3088-101, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836168

RESUMO

In this work we investigate numerically and experimentally the resonance wavelength tuning of different nanoplasmonic antennas excited through the evanescent field of a single mode silicon nitride waveguide and study their interaction with this excitation field. Experimental interaction efficiencies up to 19% are reported and it is shown that the waveguide geometry can be tuned in order to optimize this interaction. Apart from the excitation of bright plasmon modes, an efficient coupling between the evanescent field and a dark plasmonic resonance is experimentally demonstrated and theoretically explained as a result of the propagation induced phase delay.

10.
Opt Lett ; 39(13): 4025-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978798

RESUMO

We experimentally demonstrate the use of high contrast, CMOS-compatible integrated photonic waveguides for Raman spectroscopy. We also derive the dependence of collected Raman power with the waveguide parameters and experimentally verify the derived relations. Isopropyl alcohol (IPA) is evanescently excited and detected using single-mode silicon-nitride strip waveguides. We analyze the measured signal strength of pure IPA corresponding to an 819 cm⁻¹ Raman peak due to in-phase C-C-O stretch vibration for several waveguide lengths and deduce a pump power to Raman signal conversion efficiency on the waveguide to be at least 10⁻¹¹ per cm.


Assuntos
Análise Espectral Raman/métodos , 2-Propanol/análise , Fenômenos Ópticos , Compostos de Silício , Análise Espectral Raman/instrumentação
11.
Nano Lett ; 13(11): 5063-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24073748

RESUMO

On-chip optical interconnects still miss a high-performance laser monolithically integrated on silicon. Here, we demonstrate a silicon-integrated InP nanolaser that operates at room temperature with a low threshold of 1.69 pJ and a large spontaneous emission factor of 0.04. An epitaxial scheme to grow relatively thick InP nanowires on (001) silicon is developed. The zincblende/wurtzite crystal phase polytypism and the formed type II heterostructures are found to promote lasing over a wide wavelength range.

12.
Opt Lett ; 35(15): 2523-5, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680045

RESUMO

We investigate an air-slot photonic crystal cavity for high-precision refractive index sensing. The high quality factor approximately 2.6x10(4) of the cavity, along with a strong overlap between the resonant mode and the hollow core region, allows us to achieve an experimental sensitivity of 510nm per refractive index unit (RUI) and a detection limit below 1x10(-5)RUI. The device has a remarkably low sensing volume of 40aliters, holding less than 1x10(6)molecules.

13.
Opt Lett ; 34(9): 1477-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19412311

RESUMO

Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mum apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tuning. At a wavelength of 1550 nm, continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.

14.
Opt Lett ; 34(3): 359-61, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183658

RESUMO

We experimentally investigate the dispersion curve of an integrated silicon-on-insulator coupled-cavity waveguide in a photonic crystal environment using a technique based on far-field imaging. We show that a chain of eight coupled cavities of a moderate Q factor can form a continuous dispersion band characterized by extremely flat dispersion and a group index of 105+/-20 within a 2.6 nm wavelength range. The experimental results are well reproduced by theoretical calculations based on the guided-mode expansion method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...