Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 67, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604914

RESUMO

Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.

2.
J Plant Physiol ; 207: 30-41, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792899

RESUMO

Environmental gravity modulates plant growth and development, and these processes are influenced by the balance between cell proliferation and differentiation in meristems. Meristematic cells are characterized by the coordination between cell proliferation and cell growth, that is, by the accurate regulation of cell cycle progression and the optimal production of biomass for the viability of daughter cells after division. Thus, cell growth is correlated with the rate of ribosome biogenesis and protein synthesis. We investigated the effects of simulated microgravity on cellular functions of the root meristem in a sequential study. Seedlings were grown in a clinostat, a device producing simulated microgravity, for periods between 3 and 10days. In a complementary study, seedlings were grown in a Random Positioning Machine (RPM) and sampled sequentially after similar periods of growth. Under these conditions, the cell proliferation rate and the regulation of cell cycle progression showed significant alterations, accompanied by a reduction of cell growth. However, the overall size of the root meristem did not change. Analysis of cell cycle phases by flow cytometry showed changes in their proportion and duration, and the expression of the cyclin B1 gene, a marker of entry in mitosis, was decreased, indicating altered cell cycle regulation. With respect to cell growth, the rate of ribosome biogenesis was reduced under simulated microgravity, as shown by morphological and morphometric nucleolar changes and variations in the levels of the nucleolar protein nucleolin. Furthermore, in a nucleolin mutant characterized by disorganized nucleolar structure, the microgravity treatment intensified disorganization. These results show that, regardless of the simulated microgravity device used, a great disruption of meristematic competence was the first response to the environmental alteration detected at early developmental stages. However, longer periods of exposure to simulated microgravity do not produce an intensification of the cellular damages or a detectable developmental alteration in seedlings analyzed at further stages of their growth. This suggests that the secondary response to the gravity alteration is a process of adaptation, whose mechanism is still unknown, which eventually results in viable adult plants.


Assuntos
Arabidopsis/citologia , Arabidopsis/fisiologia , Meio Ambiente , Meristema/citologia , Meristema/fisiologia , Simulação de Ausência de Peso , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proliferação de Células , Ciclina B1/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Meristema/anatomia & histologia , Tamanho do Órgão , Biogênese de Organelas , Ribossomos/metabolismo , Ribossomos/ultraestrutura
3.
New Phytol ; 208(4): 1138-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26180024

RESUMO

Many plants accumulate proline, a compatible osmolyte, in response to various environmental stresses such as water deficit and salinity. In some stress responses, plants generate hydrogen peroxide (H2 O2 ) that mediates numerous physiological and biochemical processes. The aim was to study the relationship between stress-induced proline accumulation and H2 O2 production. Using pharmacological and reverse genetic approaches in Arabidopsis thaliana, we investigated the role of NADPH oxidases, Respiratory burst oxidase homologues (Rboh), in the induction of proline accumulation was investigated in response to stress induced by either 200 mM NaCl or 400 mM mannitol. Stress from NaCl or mannitol resulted in a transient increase in H2 O2 content accompanied by accumulation of proline. Dimethylthiourea, a scavenger of H2 O2 , and diphenylene iodonium (DPI), an inhibitor of H2 O2 production by NADPH oxidase, were found to significantly inhibit proline accumulation in these stress conditions. DPI also reduced the expression level of Δ(1) -pyrroline-5-carboxylate synthetase, the key enzyme involved in the biosynthesis of proline. Similarly, less proline accumulated in knockout mutants lacking either AtRbohD or AtRbohF than in wild-type plants in response to the same stresses. Our data demonstrate that AtRbohs (A. thaliana Rbohs) contribute to H2 O2 production in response to NaCl or mannitol stress to increase proline accumulation in this plant.


Assuntos
Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Manitol/metabolismo , NADH NADPH Oxirredutases/metabolismo , Prolina/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo
4.
J Plant Physiol ; 171(8): 619-24, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24709154

RESUMO

The relationship between endogenous hormones content and the induction of somatic peach plant was studied. To induce multiple shoots from callus derived from the base of stem explants of the scion cultivars 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach×almond rootstocks 'Garnem' and 'GF677', propagated plants were cultured on Murashige and Skoog salts augmented with 0.1mgL(-1) of indolebutyric acid, 1mgL(-1) of 6-benzylaminopurine and 3% sucrose. The highest regeneration rate was obtained with the peach×almond rootstocks. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in the organogenic callus. Lower levels of several hormones, namely Z, ZR, ABA, and ACC were found in the peach×almond rootstock compared to peach cultivars, while IAA and SA presented inconclusive returns. These results suggest that the difference in somatic organogenesis capacity observed in peach and peach×almond hybrids is markedly affected by the endogenous hormonal content of the studied genotypes.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Prunus/crescimento & desenvolvimento , Prunus/genética , Cromatografia Líquida de Alta Pressão , Hibridização Genética , Espectrometria de Massas , Morfogênese , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Prunus/metabolismo
5.
PLoS One ; 9(3): e91814, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618597

RESUMO

The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Microssomos/metabolismo , Voo Espacial , Ausência de Peso , Proteínas de Membrana/metabolismo , Fenótipo , Transporte Proteico , Proteômica , Plântula/crescimento & desenvolvimento
6.
Plant Signal Behav ; 9(9): e29637, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763699

RESUMO

Growing plants in space for using them in bioregenerative life support systems during long-term human spaceflights needs improvement of our knowledge in how plants can adapt to space growth conditions. In a previous study performed on board the International Space Station (GENARA A experiment STS-132) we evaluate the global changes that microgravity can exert on the membrane proteome of Arabidopsis seedlings. Here we report additional data from this space experiment, taking advantage of the availability in the EMCS of a centrifuge to evaluate the effects of cues other than microgravity on the relative distribution of membrane proteins. Among the 1484 membrane proteins quantified, 227 proteins displayed no abundance differences between µ g and 1 g in space, while their abundances significantly differed between 1 g in space and 1 g on ground. A majority of these proteins (176) were over-represented in space samples and mainly belong to families corresponding to protein synthesis, degradation, transport, lipid metabolism, or ribosomal proteins. In the remaining set of 51 proteins that were under-represented in membranes, aquaporins and chloroplastic proteins are majority. These sets of proteins clearly appear as indicators of plant physiological processes affected in space by stressful factors others than microgravity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Meio Ambiente Extraterreno , Proteoma/metabolismo , Ausência de Peso/efeitos adversos , Proteínas de Arabidopsis/metabolismo , Microssomos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Voo Espacial , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...