Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38781976

RESUMO

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.

2.
Genome Biol ; 24(1): 172, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480112

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by mutations in the arylsulfatase A gene (ARSA) and categorized into three subtypes according to age of onset. The functional effect of most ARSA mutants remains unknown; better understanding of the genotype-phenotype relationship is required to support newborn screening (NBS) and guide treatment. RESULTS: We collected a patient data set from the literature that relates disease severity to ARSA genotype in 489 individuals with MLD. Patient-based data were used to develop a phenotype matrix that predicts MLD phenotype given ARSA alleles in a patient's genotype with 76% accuracy. We then employed a high-throughput enzyme activity assay using mass spectrometry to explore the function of ARSA variants from the curated patient data set and the Genome Aggregation Database (gnomAD). We observed evidence that 36% of variants of unknown significance (VUS) in ARSA may be pathogenic. By classifying functional effects for 251 VUS from gnomAD, we reduced the incidence of genotypes of unknown significance (GUS) by over 98.5% in the overall population. CONCLUSIONS: These results provide an additional tool for clinicians to anticipate the disease course in MLD patients, identifying individuals at high risk of severe disease to support treatment access. Our results suggest that more than 1 in 3 VUS in ARSA may be pathogenic. We show that combining genetic and biochemical information increases diagnostic yield. Our strategy may apply to other recessive diseases, providing a tool to address the challenge of interpreting VUS within genotype-phenotype relationships and NBS.


Assuntos
Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Fenótipo , Genótipo , Alelos , Gravidade do Paciente
3.
J Biol Chem ; 298(12): 102625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306823

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Assuntos
Encefalopatias , Mucopolissacaridose III , Cricetinae , Animais , Humanos , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Células CHO , Projetos Piloto , Cricetulus , Hidrolases/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatias/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
4.
Nat Commun ; 12(1): 2224, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850126

RESUMO

Prioritizing genes for translation to therapeutics for common diseases has been challenging. Here, we propose an approach to identify drug targets with high probability of success by focusing on genes with both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). We find 98 BEST genes for a variety of indications. Drugs targeting those genes are 3.8-fold more likely to be approved than non-BEST genes. We focus on five genes (IGF1R, NPPC, NPR2, FGFR3, and SHOX) with evidence for bidirectional effects on stature. Rare protein-altering variants in those genes result in significantly increased risk for idiopathic short stature (ISS) (OR = 2.75, p = 3.99 × 10-8). Finally, using functional experiments, we demonstrate that adding an exogenous CNP analog (encoded by NPPC) rescues the phenotype, thus validating its potential as a therapeutic treatment for ISS. Our results show the value of looking for bidirectional effects to identify and validate drug targets.


Assuntos
Genes , Preparações Farmacêuticas , Descoberta de Drogas , Nanismo/genética , Estudos de Associação Genética , Humanos , Peptídeo Natriurético Tipo C/genética , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor IGF Tipo 1/genética , Receptores do Fator Natriurético Atrial/genética , Proteína de Homoeobox de Baixa Estatura/genética
6.
J Biol Chem ; 295(39): 13556-13569, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32727849

RESUMO

Mutations in the galactosidase ß 1 (GLB1) gene cause lysosomal ß-galactosidase (ß-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. ß-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, ß-Gal only partially depends on PPCA, prompting us to investigate the role that ß-Gal plays in the multienzyme complex. Here, we demonstrate that ß-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human ß-Gal (rhß-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhß-Gal, followed by enzyme withdrawal, is sufficient to augment ß-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of ß-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhß-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of ß-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhß-Gal is a tunable approach that can safely augment ß-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


Assuntos
Terapia de Reposição de Enzimas , Fibroblastos/enzimologia , Lisossomos/enzimologia , Mucolipidoses , beta-Galactosidase/uso terapêutico , Animais , Células CHO , Cricetulus , Humanos , Lisossomos/genética , Camundongos , Camundongos Mutantes , Mucolipidoses/tratamento farmacológico , Mucolipidoses/enzimologia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo
7.
Biotechnol Prog ; 36(3): e2974, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990124

RESUMO

Difficult-to-express (DTE) recombinant proteins such as multi-specific proteins, DTE monoclonal antibodies, and lysosomal enzymes have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells or other mammalian cells as production platforms. CHO cells are preferably used for recombinant protein production for their ability to secrete human-like recombinant proteins with posttranslational modification, resistance to viral infection, and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there is growing interest in the use of microRNA (miRNA) to engineer CHO cells expressing DTE proteins to improve cell performance of relevant bioprocess phenotypes. To our knowledge, no research has been done to improve CHO cell production of DTE recombinant lysosomal sulfatase using miRNA. We identified miR-23a and miR-377 as miRNAs predicted to target SUMF1, an activator of sulfatases, using in silico prediction tools. Transient inhibition of CHO endogenous miR-23a/miR-377 significantly enhanced recombinant sulfatase enzyme-specific activity by ~15-21% compared to scramble without affecting cell growth. Though inhibition of miR-23a/miR-377 had no significant effect on the mRNA and protein levels of SUMF1, overexpression of miR-23a/377 caused ~30% and ~27-29% significant reduction in endogenous SUMF1 protein and mRNA expression levels, respectively. In summary, our data demonstrate the importance of using miRNA to optimize the CHO cell line secreting DTE recombinant lysosomal sulfatase.


Assuntos
MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Sulfatases/biossíntese , Animais , Células CHO , Proliferação de Células , Cricetulus , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Lisossomos/enzimologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sulfatases/genética
8.
Drug Deliv Transl Res ; 10(2): 425-439, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31942701

RESUMO

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.


Assuntos
Acetilglucosaminidase/administração & dosagem , Acetilglucosaminidase/genética , Barreira Hematoencefálica/química , Fator de Crescimento Insulin-Like II/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Acetilglucosaminidase/uso terapêutico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Feminino , Infusões Intraventriculares , Fator de Crescimento Insulin-Like II/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Mucopolissacaridose III/genética , Primatas , Proteínas Recombinantes de Fusão/uso terapêutico , Pesquisa Translacional Biomédica
9.
J Biol Chem ; 295(39): 13532-13555, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31481471

RESUMO

Autosomal recessive mutations in the galactosidase ß1 (GLB1) gene cause lysosomal ß-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human ß-gal (rhß-gal) produced in Chinese hamster ovary cells enabled direct and precise rhß-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhß-gal was sufficient for normalizing ß-gal activity and mediating substrate clearance for several weeks. We found that rhß-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor-mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhß-gal (100 µg) resulted in broad bilateral biodistribution of rhß-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhß-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of ß-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhß-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches.


Assuntos
Terapia de Reposição de Enzimas , Gangliosidose GM1/terapia , beta-Galactosidase/metabolismo , Animais , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Camundongos
10.
Mol Genet Metab Rep ; 21: 100524, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720227

RESUMO

INTRODUCTION: GM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes ß-galactosidase, a lysosomal hydrolase that removes ß-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in ß-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain ß-linked galactose whose metabolites are substrates for ß-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids. OBJECTIVE: In this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover. RESULTS: Using tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well. CONCLUSIONS: Our studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many ß-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all ß-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies.

11.
Mol Ther Methods Clin Dev ; 14: 56-63, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31309128

RESUMO

Sanfilippo syndrome type B, or mucopolysaccharidosis IIIB (MPS IIIB), is a rare autosomal recessive lysosomal storage disease caused by a deficiency of α-N-acetylglucosaminidase (NAGLU). Deficiency in NAGLU disrupts the lysosomal turnover of heparan sulfate (HS), which results in the abnormal accumulation of partially degraded HS in cells and tissues. BMN 250 (NAGLU-insulin-like growth factor 2 [IGF2]) is a recombinant fusion protein developed as an investigational enzyme replacement therapy for MPS IIIB. The IGF2 peptide on BMN 250 promotes enhanced targeting of the enzyme to lysosomes through its interaction with the mannose 6-phosphate receptor. The focus of these studies was to further characterize the ability of NAGLU-IGF2 to clear accumulated HS compared to unmodified NAGLU in primary cellular models of MPS IIIB. Here, we establish distinct primary cell models of MPS IIIB with HS accumulation. These cellular models revealed distinct NAGLU uptake characteristics that depend on the duration of exposure. We found that with sustained exposure, NAGLU uptake and HS clearance occurred independent of known lysosomal targeting signals. In contrast, under conditions of limited exposure duration, NAGLU-IGF2 was taken up more rapidly than the unmodified NAGLU into MPS IIIB primary fibroblasts, astrocytes, and cortical neurons, where it efficiently degraded accumulated HS. These studies illustrate the importance of using physiologically relevant conditions in the evaluation of enzyme replacement therapies in cellular models.

12.
Hum Mutat ; 40(9): 1519-1529, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342580

RESUMO

The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge attracted 17 submissions from 10 groups. We observed that top models were able to predict the impact of missense mutations on enzymatic activity with Pearson's correlation coefficients of up to .61. We also observed that top methods were significantly more correlated with each other than they were with observed enzymatic activity values, which we believe speaks to the importance of sequence conservation across the different methods. Improved functional predictions on the VUS will help population-scale analysis of disease epidemiology and rare variant association analysis.


Assuntos
Acetilglucosaminidase/metabolismo , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Acetilglucosaminidase/genética , Humanos , Modelos Genéticos , Análise de Regressão
13.
PLoS One ; 14(1): e0207836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30657762

RESUMO

Sanfilippo syndrome type B (Sanfilippo B; Mucopolysaccharidosis type IIIB) occurs due to genetic deficiency of lysosomal alpha-N-acetylglucosaminidase (NAGLU) and subsequent lysosomal accumulation of heparan sulfate (HS), which coincides with devastating neurodegenerative disease. Because NAGLU expressed in Chinese hamster ovary cells is not mannose-6-phosphorylated, we developed an insulin-like growth factor 2 (IGF2)-tagged NAGLU molecule (BMN 250; tralesinidase alfa) that binds avidly to the IGF2 / cation-independent mannose 6-phosphate receptor (CI-MPR) for glycosylation independent lysosomal targeting. BMN 250 is currently being developed as an investigational enzyme replacement therapy for Sanfilippo B. Here we distinguish two cellular uptake mechanisms by which BMN 250 is targeted to lysosomes. In normal rodent-derived neurons and astrocytes, the majority of BMN250 uptake over 24 hours reaches saturation, which can be competitively inhibited with IGF2, suggestive of CI-MPR-mediated uptake. Kuptake, defined as the concentration of enzyme at half-maximal uptake, is 5 nM and 3 nM in neurons and astrocytes, with a maximal uptake capacity (Vmax) corresponding to 764 nmol/hr/mg and 5380 nmol/hr/mg, respectively. Similar to neurons and astrocytes, BMN 250 uptake in Sanfilippo B patient fibroblasts is predominantly CI-MPR-mediated, resulting in augmentation of NAGLU activity with doses of enzyme that fall well below the Kuptake (5 nM), which are sufficient to prevent HS accumulation. In contrast, uptake of the untagged recombinant human NAGLU (rhNAGLU) enzyme in neurons, astrocytes and fibroblasts is negligible at the same doses tested. In microglia, receptor-independent uptake, defined as enzyme uptake resistant to competition with excess IGF2, results in appreciable lysosomal delivery of BMN 250 and rhNAGLU (Vmax = 12,336 nmol/hr/mg and 5469 nmol/hr/mg, respectively). These results suggest that while receptor-independent mechanisms exist for lysosomal targeting of rhNAGLU in microglia, BMN 250, by its IGF2 tag moiety, confers increased CI-MPR-mediated lysosomal targeting to neurons and astrocytes, two additional critical cell types of Sanfilippo B disease pathogenesis.


Assuntos
Acetilglucosaminidase/metabolismo , Endocitose , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Acetilglucosaminidase/farmacocinética , Acetilglucosaminidase/uso terapêutico , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Cátions , Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/patologia , Humanos , Fator de Crescimento Insulin-Like II/farmacocinética , Lisossomos/enzimologia , Microglia/metabolismo , Ratos , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética
14.
PLoS One ; 13(7): e0200008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979746

RESUMO

Given the large and expanding quantity of publicly available sequencing data, it should be possible to extract incidence information for monogenic diseases from allele frequencies, provided one knows which mutations are causal. We tested this idea on a rare, monogenic, lysosomal storage disorder, Sanfilippo Type B (Mucopolysaccharidosis type IIIB). Sanfilippo Type B is caused by mutations in the gene encoding α-N-acetylglucosaminidase (NAGLU). There were 189 NAGLU missense variants found in the ExAC dataset that comprises roughly 60,000 individual exomes. Only 24 of the 189 missense variants were known to be pathogenic; the remaining 165 variants were of unknown significance (VUS), and their potential contribution to disease is unknown. To address this problem, we measured enzymatic activities of 164 NAGLU missense VUS in the ExAC dataset and developed a statistical framework for estimating disease incidence with associated confidence intervals. We found that 25% of VUS decreased the activity of NAGLU to levels consistent with Sanfilippo Type B pathogenic alleles. We found that a substantial fraction of Sanfilippo Type B incidence (67%) could be accounted for by novel mutations not previously identified in patients, illustrating the utility of combining functional activity data for VUS with population-wide allele frequency data in estimating disease incidence.


Assuntos
Exoma/genética , Variação Genética , Mucopolissacaridose III/genética , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Humanos , Incidência , Modelos Moleculares , Mucopolissacaridose III/enzimologia , Mutação de Sentido Incorreto , Conformação Proteica
15.
Mol Ther Methods Clin Dev ; 6: 43-53, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28664165

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu-/- mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu-/- mice were treated with 1-100 µg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 µg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu-/- mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu-/- mouse brain.

16.
J Biol Chem ; 292(10): 4255-4265, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28115520

RESUMO

Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death.


Assuntos
Lipofuscina/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Peroxidase/metabolismo , Receptor IGF Tipo 2/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Estresse Fisiológico , Células Cultivadas , Humanos , Epitélio Pigmentado da Retina/patologia
17.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267636

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Assuntos
Acetilglucosaminidase/uso terapêutico , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitose , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparitina Sulfato/metabolismo , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose III/patologia , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , beta-N-Acetil-Hexosaminidases/metabolismo
18.
J Biol Chem ; 288(3): 1428-38, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23188827

RESUMO

We have used a peptide-based targeting system to improve lysosomal delivery of acid α-glucosidase (GAA), the enzyme deficient in patients with Pompe disease. Human GAA was fused to the glycosylation-independent lysosomal targeting (GILT) tag, which contains a portion of insulin-like growth factor II, to create an active, chimeric enzyme with high affinity for the cation-independent mannose 6-phosphate receptor. GILT-tagged GAA was taken up by L6 myoblasts about 25-fold more efficiently than was recombinant human GAA (rhGAA). Once delivered to the lysosome, the mature form of GILT-tagged GAA was indistinguishable from rhGAA and persisted with a half-life indistinguishable from rhGAA. GILT-tagged GAA was significantly more effective than rhGAA in clearing glycogen from numerous skeletal muscle tissues in the Pompe mouse model. The GILT-tagged GAA enzyme may provide an improved enzyme replacement therapy for Pompe disease patients.


Assuntos
Terapia de Reposição de Enzimas/métodos , Glucana 1,4-alfa-Glucosidase/metabolismo , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Glicogênio/metabolismo , Lisossomos/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Glucana 1,4-alfa-Glucosidase/genética , Doença de Depósito de Glicogênio Tipo II/genética , Glicosilação , Células HEK293 , Meia-Vida , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Cinética , Lisossomos/enzimologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Mioblastos/patologia , Plasmídeos , Receptor IGF Tipo 2/agonistas , Receptor IGF Tipo 2/metabolismo , Transfecção
19.
Mol Biochem Parasitol ; 157(1): 54-64, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18023890

RESUMO

Post-transcriptional regulation is a key feature controlling gene expression in the protozoan parasite Leishmania. The nine-nucleotide paraflagellar rod regulatory element (PRE) in the 3'UTR of Leishmania mexicana PFR2 is both necessary and sufficient for the observed 10-fold higher level of PFR2 mRNA in promastigotes compared to amastigotes. It is also found in the 3'UTRs of all known PFR genes. A search of the Leishmania major Friedlin genomic database revealed several genes that share this cis element including a homolog of a heterotrimeric kinesin II subunit, and a gene that shares identity to a homolog of a Plasmodium antigen. In this study, we show that genes that harbor the PRE display promastigote-enriched transcript accumulation ranging from 4- to 15-fold. Northern analysis on episomal block substitution constructs revealed that the regulatory element is necessary for the proper steady-state accumulation of mRNA in L. mexicana paraflagellar rod gene 4 (PFR4). Also we show that the PRE plays a major role in the proper steady-state mRNA accumulation of PFR1, but may not account for the full regulatory mechanism acting on this mRNA. Our evidence suggests that the PRE coordinately regulates the mRNA abundance of not only the PFR family of genes, but also in a larger group of genes that have unrelated functions. Although the PRE alone can regulate some mRNAs, it may also act in concert with additional elements to control other RNA transcripts.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Leishmania mexicana/fisiologia , Proteínas de Protozoários/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Regiões 3' não Traduzidas/fisiologia , Animais , Northern Blotting , DNA de Protozoário/química , DNA de Protozoário/genética , Leishmania major/genética , Leishmania mexicana/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA de Protozoário/genética , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...