Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 102(12): e03526, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34467526

RESUMO

Invasive species can reach high abundances and dominate native environments. One of the most impressive examples of ecological invasions is the spread of the African subspecies of the honey bee throughout the Americas, starting from its introduction in a single locality in Brazil. The invasive honey bee is expected to more negatively impact bee community abundance and diversity than native dominant species, but this has not been tested previously. We developed a comprehensive and systematic bee sampling scheme, using a protocol deploying 11,520 pan traps across regions and crops for three years in Brazil. We found that invasive honey bees are now the single most dominant bee species. Such dominance has not only negative consequences for abundance and species richness of native bees but also for overall bee abundance (i.e., strong "numerical" effects of honey bees). Contrary to expectations, honey bees did not have stronger negative impacts than other native bees achieving similar levels of dominance (i.e., lack of negative "identity" effects of honey bees). These effects were markedly consistent across crop species, seasons and years, and were independent from land-use effects. Dominance could be a proxy of bee community degradation and more generally of the severity of ecological invasions.


Assuntos
Produtos Agrícolas , Espécies Introduzidas , Animais , Abelhas , Brasil , Estações do Ano
2.
Mol Phylogenet Evol ; 43(3): 795-807, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17208464

RESUMO

The Andes of South America contain one of the richest avifaunas in the world, but little is known about how this diversity arises and is maintained. Variation in mitochondrial DNA and morphology within the speckled hummingbird (Adelomyia melanogenys) was used to elucidate the phylogeographic pattern along an Ecuadorian elevational gradient, from the coastal cordillera to the inland Andean montane region. We examined sequence, climatic/remote sensing and morphological data to understand the effects of topography and ecology on patterns of variation. Populations on either side of the Andes are genetically divergent and were separated during a period that corresponds to the final stages of Andean uplift during the Pliocene. Despite isolation, these two populations were found to be morphologically similar suggesting a strong effect of stabilizing selection across ecologically similar Andean cloud forests, as assessed using climatic and remote sensing data. In contrast, little genetic divergence was found between coastal and west-Andean individuals, suggesting recent interruption of gene flow between these localities. However, coastal populations were found to inhabit different habitats compared to Andean populations as shown by climatic and remote sensing variables. Furthermore, coastal individuals had significantly longer bills compared to their montane relatives, indicative of differential directional selection and the influence of habitat differences in shaping phenotypic variation. Results highlight the role of both isolation and ecology in diversification in Ecuadorian montane regions, while suggesting the two may not always act in concert to produce divergence in adaptive traits.


Assuntos
Aves/genética , Filogenia , Animais , Aves/classificação , DNA Mitocondrial/genética , Ecologia , Equador , Geografia , Haplótipos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA