Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675992

RESUMO

Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2 , Antivirais/uso terapêutico , Antivirais/farmacologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Células CACO-2 , Animais , COVID-19/virologia
2.
Eur J Med Chem ; 268: 116263, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432056

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Cisteína Endopeptidases , Antivirais/farmacologia
3.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260306

RESUMO

Apical-out organoids produced through eversion triggered by extra-organoid extracellular matrix (ECM) removal or degradation are generally small, structurally variable, and limited for viral infection and therapeutics testing. This work describes ECM-encapsulating, stably-inverted apical-out human upper airway organoids (AORBs) that are large (~500 µm diameter), consistently spherical, recapitulate in vivo-like cellular heterogeneity, and maintain their inverted morphology for over 60 days. Treatment of AORBs with IL-13 skews differentiation towards goblet cells and the apical-out geometry allows extra-organoid mucus collection. AORB maturation for 14 days induces strong co-expression of ACE2 and TMPRSS2 to allow high-yield infection with five SARS-CoV-2 variants. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds [remdesivir, bemnifosbuvir (AT-511), and nirmatrelvir] shows AORB antiviral assays to be comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). While this work focuses on SARS-CoV-2 applications, the consistent AORB shape and size, and one-organoid-per-well modularity broadly impacts in vitro human cell model standardization efforts in line with economic imperatives and recently updated FDA regulation on therapeutic testing.

4.
Cancer Rep (Hoboken) ; 6(5): e1810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987545

RESUMO

BACKGROUND: Human papillomavirus (HPV) is the causative agent of nearly all forms of cervical cancer, which can arise upon viral integration into the host genome and concurrent loss of viral regulatory gene E2. Gene-based delivery approaches show that E2 reintroduction reduces proliferative capacity and promotes apoptosis in vitro. AIMS: This work explored if our calcium-dependent protein-based delivery system, TAT-CaM, could deliver functional E2 protein directly into cervical cancer cells to limit proliferative capacity and induce cell death. MATERIALS AND RESULTS: TAT-CaM and the HPV16 E2 protein containing a CaM-binding sequence (CBS-E2) were expressed and purified from Escherichia coli. Calcium-dependent binding kinetics were verified by biolayer interferometry. Equimolar TAT-CaM:CBS-E2 constructs were delivered into the HPV16+ SiHa cell line and uptake verified by confocal microscopy. Proliferative capacity was measured by MTS assay and cell death was measured by release of lactate dehydrogenase. As a control, human microvascular cells (HMECs) were used. As expected, TAT-CaM bound CBS-E2 with high affinity in the presence of calcium and rapidly disassociated upon its removal. After introduction by TAT-CaM, fluorescently labeled CBS-E2 was detected in cellular interiors by orthogonal projections taken at the depth of the nucleus. In dividing cells, E2 relocalized to regions associated with the mitotic spindle. Cells receiving a daily dose of CBS-E2 for 4 days showed a significant reduction in metabolic activity at low doses and increased cell death at high doses compared to controls. This phenotype was retained for 7 days with no further treatments. When subcultured on day 12, treated cells regained their proliferative capacity. CONCLUSIONS: Using the TAT-CaM platform, bioactive E2 protein was delivered into living cervical cancer cells, inducing senescence and cell death in a time- and dose-dependent manner. These results suggest that this nucleic acid and virus-free delivery method could be harnessed to develop novel, effective protein therapeutics.


Assuntos
Peptídeos Penetradores de Células , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/terapia , Papillomavirus Humano , Cálcio , Proteínas E7 de Papillomavirus , Apoptose
5.
Viruses ; 15(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36851758

RESUMO

Over the past decades, both 4'-modified nucleoside and carbocyclic nucleoside analogs have been under the spotlight as several compounds from either family showed anti-HIV, HCV, RSV or SARS-CoV-2 activity. Herein, we designed compounds combining these two features and report the synthesis of a series of novel 4'-substituted carbocyclic uracil derivatives along with their corresponding monophosphate prodrugs. These compounds were successfully prepared in 19 to 22 steps from the commercially available (-)-Vince lactam and were evaluated against a panel of RNA viruses including SARS-CoV-2, influenza A/B viruses and norovirus.


Assuntos
COVID-19 , Vírus da Influenza A , Pró-Fármacos , Humanos , Antivirais/farmacologia , Anticorpos Anti-Hepatite C , Vírus da Influenza B , Nucleosídeos , Pró-Fármacos/farmacologia , SARS-CoV-2 , Uracila
6.
Microorganisms ; 10(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363688

RESUMO

Yellow fever virus (YFV) is a potentially lethal, zoonotic, blood-borne flavivirus transmitted to humans and non-human primates by mosquitoes. Owing to multiple deadly epidemics, the WHO classifies YFV as a "high impact, high threat disease" with resurgent epidemic potential. At present, there are no approved antiviral therapies to combat YFV infection. Herein we report on 2'-halogen-modified nucleoside analogs as potential anti-YFV agents. Of 11 compounds evaluated, three showed great promise with low toxicity, high intracellular metabolism into the active nucleoside triphosphate form, and sub-micromolar anti-YFV activity. Notably, we investigated a 2'-fluoro,2'-bromouridine phosphate prodrug (C9), a known anti-HCV agent with good stability in human blood and favorable metabolism. Predictive modeling revealed that C9 could readily bind the active site of the YFV RdRp, conferring its anti-YFV activity. C9 displayed potent anti-YFV activity in primary human macrophages, 3D hepatocyte spheroids, and in mice. In an A129 murine model, shortly after infection, C9 significantly reduced YFV replication and protected against YFV-induced liver inflammation and pathology with no adverse effects. Collectively, this work identifies a potent new anti-YFV agent with strong therapeutic promise.

7.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145365

RESUMO

Coronavirus disease 2019 (COVID-19) is an emerging global pandemic with severe morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molnupiravir, an ester prodrug form of N4-hydroxycytidine (NHC), was recently emergency-use approved for the treatment of early SARS-CoV-2 infections. Herein, we report the synthesis and evaluation of a series of novel NHC analogs.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34870151

RESUMO

Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 â€‹cells, and anti-HCoV-OC43 activity in Huh-7 â€‹cells. We also compared the cellular pharmacology of these two compounds in Vero E6, Vero CCL-81, Calu-3, Caco-2, Huh-7, 293T, BHK-21, 3T3 and human airway epithelial (HAE) cells. Overall, remdesivir exhibited greater potency and superior intracellular metabolism than GS-441524 except in Vero E6 and Vero CCL-81 â€‹cells.

9.
Viruses ; 11(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159175

RESUMO

Herpes B virus is a deadly zoonotic agent that can be transmitted to humans from the macaque monkey, an animal widely used in biomedical research. Currently, there is no cure for human B virus infection and treatments require a life-long daily regimen of antivirals, namely acyclovir and ganciclovir. Long-term antiviral treatments have been associated with significant debilitating side effects, thus, there is an ongoing search for alternative efficacious antiviral treatment. In this study, the antiviral activity of genistein was quantified against B virus in a primary cell culture model system. Genistein prevented plaque formation of B virus and reduced virus production with an IC50 value of 33 and 46 µM for human and macaque fibroblasts, respectively. Genistein did not interfere directly with viral entry, but instead targeted an event post-viral replication. Finally, we showed that genistein could be used at its IC50 concentration in conjunction with both acyclovir and ganciclovir to reduce their effective dose against B virus with a 93% and 99% reduction in IC50 values, respectively. The results presented here illuminate the therapeutic potential of genistein as an effective antiviral agent against B virus when used alone or in combination with current antiviral therapies.


Assuntos
Antivirais/farmacologia , Fibroblastos/virologia , Genisteína/farmacologia , Herpesvirus Cercopitecino 1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Aciclovir/farmacologia , Animais , Células Cultivadas , Sinergismo Farmacológico , Ganciclovir/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Macaca
10.
Biomol Concepts ; 8(3-4): 131-141, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28841567

RESUMO

Cell-penetrating peptides (CPPs) have long held great promise for the manipulation of living cells for therapeutic and research purposes. They allow a wide array of biomolecules from large, oligomeric proteins to nucleic acids and small molecules to rapidly and efficiently traverse cytoplasmic membranes. With few exceptions, if a molecule can be associated with a CPP, it can be delivered into a cell. However, a growing realization in the field is that CPP-cargo fusions largely remain trapped in endosomes and are eventually targeted for degradation or recycling rather than released into the cytoplasm or trafficked to a desired subcellular destination. This 'endosomal escape problem' has confounded efforts to develop CPP-based delivery methods for drugs, enzymes, plasmids, etc. This review provides a brief history of CPP research and discusses current issues in the field with a primary focus on the endosomal escape problem, for which several promising potential solutions have been developed. Are we on the verge of developing technologies to deliver therapeutics such as siRNA, CRISPR/Cas complexes and others that are currently failing because of an inability to get into cells, or are we just chasing after another promising but unworkable technology? We make the case for optimism.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/fisiologia , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Endocitose , Endossomos , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...