Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950178

RESUMO

MOTIVATION: Gene set enrichment (GSE) analysis allows for an interpretation of gene expression through pre-defined gene set databases and is a critical step in understanding different phenotypes. With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, GSE analysis can be performed on fine-grained gene expression data to gain a nuanced understanding of phenotypes of interest. However, with the cellular heterogeneity in single-cell gene profiles, current statistical GSE analysis methods sometimes fail to identify enriched gene sets. Meanwhile, deep learning has gained traction in applications like clustering and trajectory inference in single-cell studies due to its prowess in capturing complex data patterns. However, its use in GSE analysis remains limited, due to interpretability challenges. RESULTS: In this paper, we present DeepGSEA, an explainable deep gene set enrichment analysis approach which leverages the expressiveness of interpretable, prototype-based neural networks to provide an in-depth analysis of GSE. DeepGSEA learns the ability to capture GSE information through our designed classification tasks, and significance tests can be performed on each gene set, enabling the identification of enriched sets. The underlying distribution of a gene set learned by DeepGSEA can be explicitly visualized using the encoded cell and cellular prototype embeddings. We demonstrate the performance of DeepGSEA over commonly used GSE analysis methods by examining their sensitivity and specificity with four simulation studies. In addition, we test our model on three real scRNA-seq datasets and illustrate the interpretability of DeepGSEA by showing how its results can be explained. AVAILABILITY AND IMPLEMENTATION: https://github.com/Teddy-XiongGZ/DeepGSEA.


Assuntos
Aprendizado Profundo , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Transcriptoma/genética , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Redes Neurais de Computação , Software
2.
NAR Genom Bioinform ; 6(3): lqae073, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974799

RESUMO

Data from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) are now widely available. One major computational challenge is dealing with high dimensionality and inherent sparsity, which is typically addressed by producing lower dimensional representations of single cells for downstream clustering tasks. Current approaches produce such individual cell embeddings directly through a one-step learning process. Here, we propose an alternative approach by building embedding models pre-trained on reference data. We argue that this provides a more flexible analysis workflow that also has computational performance advantages through transfer learning. We implemented our approach in scEmbed, an unsupervised machine-learning framework that learns low-dimensional embeddings of genomic regulatory regions to represent and analyze scATAC-seq data. scEmbed performs well in terms of clustering ability and has the key advantage of learning patterns of region co-occurrence that can be transferred to other, unseen datasets. Moreover, models pre-trained on reference data can be exploited to build fast and accurate cell-type annotation systems without the need for other data modalities. scEmbed is implemented in Python and it is available to download from GitHub. We also make our pre-trained models available on huggingface for public use. scEmbed is open source and available at https://github.com/databio/geniml. Pre-trained models from this work can be obtained on huggingface: https://huggingface.co/databio.

3.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38991851

RESUMO

BACKGROUND: As biological data increase, we need additional infrastructure to share them and promote interoperability. While major effort has been put into sharing data, relatively less emphasis is placed on sharing metadata. Yet, sharing metadata is also important and in some ways has a wider scope than sharing data themselves. RESULTS: Here, we present PEPhub, an approach to improve sharing and interoperability of biological metadata. PEPhub provides an API, natural-language search, and user-friendly web-based sharing and editing of sample metadata tables. We used PEPhub to process more than 100,000 published biological research projects and index them with fast semantic natural-language search. PEPhub thus provides a fast and user-friendly way to finding existing biological research data or to share new data. AVAILABILITY: https://pephub.databio.org.


Assuntos
Bases de Dados Factuais , Disseminação de Informação , Internet , Metadados , Software , Interface Usuário-Computador , Disseminação de Informação/métodos , Biologia Computacional/métodos
4.
Bioengineering (Basel) ; 11(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534537

RESUMO

As available genomic interval data increase in scale, we require fast systems to search them. A common approach is simple string matching to compare a search term to metadata, but this is limited by incomplete or inaccurate annotations. An alternative is to compare data directly through genomic region overlap analysis, but this approach leads to challenges like sparsity, high dimensionality, and computational expense. We require novel methods to quickly and flexibly query large, messy genomic interval databases. Here, we develop a genomic interval search system using representation learning. We train numerical embeddings for a collection of region sets simultaneously with their metadata labels, capturing similarity between region sets and their metadata in a low-dimensional space. Using these learned co-embeddings, we develop a system that solves three related information retrieval tasks using embedding distance computations: retrieving region sets related to a user query string, suggesting new labels for database region sets, and retrieving database region sets similar to a query region set. We evaluate these use cases and show that jointly learned representations of region sets and metadata are a promising approach for fast, flexible, and accurate genomic region information retrieval.

5.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645717

RESUMO

Background: As biological data increases, we need additional infrastructure to share it and promote interoperability. While major effort has been put into sharing data, relatively less emphasis is placed on sharing metadata. Yet, sharing metadata is also important, and in some ways has a wider scope than sharing data itself. Results: Here, we present PEPhub, an approach to improve sharing and interoperability of biological metadata. PEPhub provides an API, natural language search, and user-friendly web-based sharing and editing of sample metadata tables. We used PEPhub to process more than 100,000 published biological research projects and index them with fast semantic natural language search. PEPhub thus provides a fast and user-friendly way to finding existing biological research data, or to share new data. Availability: https://pephub.databio.org.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...