Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (202)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38189491

RESUMO

Dyes for security markings play a pivotal role in safeguarding the integrity of products across various fields, such as textiles, pharmaceuticals, food, and manufacturing among others. However, most commercial dyes used as security markings are costly and may contain toxic and harmful substances that pose a risk to human health. Curcumin, a natural phenolic compound found in turmeric, possesses distinct photoluminescent properties alongside its vibrant yellow color, making it a potential candidate material for authentication applications. This study demonstrates a cost-effective and eco-friendly approach to develop enhanced photoluminescent emissions from curcumin dyes for textile authentication. Curcumin was extracted from C. longa using sonication-assisted-solvent extraction method. The extract was dip-coated and dyed into the textile substrates. Chitosan was introduced as a post-mordanting agent to stabilize the curcumin and as a co-sensitizer. Co-sensitization of curcumin with chitosan triggers energy transfer to enhance its luminescent intensity. The UV-visible absorption peak at 424 nm is associated with the characteristic absorption of curcumin. The photoluminescence measurements showed a broad emission peaking at 545 nm with significant enhancement attributed to the energy transfer induced by chitosan, thus showing great potential as a naturally derived photoluminescent dye for authentication applications.


Assuntos
Quitosana , Curcumina , Humanos , Curcuma , Transferência de Energia , Extratos Vegetais , Corantes , Têxteis
2.
ACS Appl Mater Interfaces ; 12(20): 23165-23171, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338495

RESUMO

The systematic substitution of Ba in the Sr site of Sr[Mg2Al2N4]:Eu2+ generates a deep-red-emitting phosphor with enhanced thermal luminescence properties. Gas pressure sintering (GPS) of all-nitride starting materials in Molybdenum (Mo) crucibles yields pure-phase red-orange-colored phosphors. Peaks in the synchrotron X-ray diffraction (SXRD) data show a systematic shift toward smaller angles due to the introduction of the larger Ba cation in the same crystal structure. The photoluminescence property reveals that Ba substitution shifts the original emission wavelength of Sr[Mg2Al2N4]:Eu2+ (625 nm) toward ∼690 nm for Ba[Mg2Al2N4]:Eu2+. Thermal stability measurement of Sr1-xBax[Mg2Al2N4] indicates a systematic increase in stability from x = 0 to x = 1. X-ray absorption near-edge spectroscopy (XANES) results demonstrate the coexistence of Eu2+ and Eu3+. The red-shift and the enhanced thermal stability reveals that the distance of the emitting 5d level to the conduction band of Ba[Mg2Al2N4]:Eu2+ is large. The ionic size mismatch of Eu occupying a Ba site reduces the symmetry, thereby further splitting the degenerate emitting 5d level and lowering the energy of the emitting center. The development of deep-red phosphors emitting at 670-690 nm (x = 0.8-1.0) offers possible candidates for plant lighting applications.

3.
Small ; 14(40): e1801882, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066496

RESUMO

Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...