RESUMO
OBJECTIVE: To test the hypothesis that bacterial density, strain diversity, and concordance of pathogens between upper and lower airways are higher in children with bronchiectasis than in those with non-bronchiectatic conditions. STUDY DESIGN: Nasopharyngeal (NP) swabs and bronchoalveolar lavage (BAL) fluid were cultured from 45 Indigenous children with bronchiectasis and 30 non-Indigenous children with non-bronchiectatic respiratory symptoms. Lower airway infection was defined as >10(4) colony-forming units of respiratory bacteria/mL of BAL fluid. Concordance was determined by phenotype or genotype. RESULTS: NP carriage of Streptococcus pneumoniae, nontypable Haemophilus influenzae (NTHi), and Moraxella catarrhalis, and lower airway infection by NTHi (47% vs 3%), were detected significantly more often in the children with bronchiectasis than in those without this condition. BAL specimens from the infected Indigenous children also showed greater strain diversity (71% vs 0%). Strain concordance in NP and BAL cultures was high in both infected subgroups. CONCLUSIONS: The high density and diversity of respiratory bacteria, along with strain concordance between upper and lower airways, found in Indigenous children with bronchiectasis suggest a possible pathogenic role of recurrent aspiration of NP secretions.
Assuntos
Bronquiectasia/microbiologia , Haemophilus influenzae/isolamento & purificação , Moraxella catarrhalis/isolamento & purificação , Nasofaringe/microbiologia , Havaiano Nativo ou Outro Ilhéu do Pacífico , Streptococcus pneumoniae/isolamento & purificação , Austrália , Criança , Pré-Escolar , Feminino , Humanos , Lactente , MasculinoRESUMO
Background: Malaria remains a leading global health problem that requires the improved use of existing interventions and the accelerated development of new control methods. We aimed to assess the safety, immunogenicity, and initial efficacy of the malaria vaccine RTS,S/AS02D in infants in Africa. Methods: We did a phase I/IIb double-blind randomised trial of 214 infants in Mozambique. Infants were randomly assigned to receive three doses either of RTS,S/AS02D or the hepatitis B vaccine Engerix-B at ages 10 weeks, 14 weeks, and 18 weeks of age, as well as routine immunisation vaccines given at 8, 12, and 16 weeks of age. The primary endpoint was safety of the RTS,S/AS02D during the first 6 months of the study, and analysis was by intention to treat. Secondary endpoints included immunogenicity and analysis of new Plasmodium falciparum infections during a 3-month follow up after the third dose. Time to new infections in the per-protocol cohort were compared between groups using Cox regression models. This study is registered with ClinicalTrials.gov, number NCT00197028. Findings: There were 17 children (15.9%; 95% CI 9.5-24.2) with serious adverse events in each group. In the follow-up which ended on March 6, 2007, there were 31 serious adverse events in the RTS,S/AS02D group and 30 serious adverse events in the Engerix-B group, none of which were reported as related to vaccination. There were four deaths during this same follow-up period; all of them after the active detection of infection period had finished at study month 6 (two in RTSS/AS02D group and two in the Engerix-B group). RTS,S/AS02D induced high titres of anti-circumsporozoite antibodies. 68 first or only P falciparum infections were documented: 22 in the RTS,S/AS02D group and 46 in the control group. The adjusted vaccine efficacy was 65.9% (95% CI 42.6-79.8%, p<0.0001). Interpretation: The RTS,S/AS02D malaria vaccine was safe, well tolerated, and immunogenic in young infants. These findings set the stage for expanded phase III efficacy studies to confirm vaccine efficacy against clinical malaria disease