Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 90, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782986

RESUMO

The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.

2.
Vaccines (Basel) ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675786

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.

3.
Vet Microbiol ; 288: 109946, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103394

RESUMO

Aquatic bird bornavirus 1 (ABBV-1) has a high prevalence of infection in certain North American populations of Canada geese (Branta canadensis), suggesting a possible role of these birds as an ABBV-1 reservoir. The goal of this study was to evaluate the ability of Canada geese to become experimentally infected with ABBV-1, develop lesions, and transmit the virus to conspecifics. One-week-old Canada geese (n, 65) were inoculated with ABBV-1 through the intramuscular (IM) or cloacal (CL) routes, with the control group receiving carrier only. An additional 6 geese were added to each group to test horizontal transmission (sentinel birds). Geese were monitored daily, and selected birds were euthanized at 1, 8, and 15-weeks post infection (wpi) to assess virus replication in tissues and lesion development. At 15 wpi, over 70% of IM birds were infected, while the CL route yielded only 1 infected goose. Of the infected IM geese, 26% developed encephalitis and/or myelitis after 8 wpi. No clinical signs were observed, and no sentinel birds became infected in any group. Only 1 oropharyngeal swab (IM group) tested positive for ABBV-1 RNA, while the water from the enclosures was consistently negative for virus RNA. This study documents successful experimental infection of Canada geese with ABBV-1, with findings comparable to what is described in infection trials with other waterfowl species. However, minimal shedding and lack of environmental dispersal indicate that Canada geese have little potential to disseminate the virus among wild waterfowl, and that other species could be better suited to act as chronic ABBV-1 shedders in the wild.


Assuntos
Doenças das Aves , Bornaviridae , Animais , Gansos , Bornaviridae/genética , Patos/genética , RNA Viral , Canadá/epidemiologia
4.
Sci Rep ; 13(1): 18094, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872359

RESUMO

Aquatic bird bornavirus 1 (ABBV-1) is a neurotropic virus that causes persistent infection in the nervous system of wild waterfowl. This study evaluated whether Pekin ducks, the most common waterfowl raised worldwide, are susceptible to ABBV-1 infection and associated disease. Groups of Pekin ducks were inoculated with ABBV-1 through the intracranial (IC; n, 32), intramuscular (IM; n, 30), and choanal (CH; n, 30) routes. Controls (CO; n, 29) received carrier only. At 1, 12, and 21 weeks postinfection (wpi), 7-14 birds were euthanized to assess virus distribution and lesions. Infection rates in the IC and IM groups were over 70%, while only 4 ducks in the CH group became infected. Neurological signs were observed in 8 ducks only, while over 25% of IC and IM birds had encephalitis and/or myelitis. Seroconversion was highest in the IC and IM groups, and mucosal ABBV-1 RNA shedding was most frequent in the IC group (53%). None of the fertile eggs laid during the experiment tested positive for ABBV-1 RNA. This study shows that Pekin ducks are permissive to ABBV-1 infection and partly susceptible to associated disease. While mucosal shedding may be an important route of transmission, congenital infection appears unlikely.


Assuntos
Influenza Aviária , Vírus de RNA , Animais , Patos , Vírus de RNA/genética , RNA
5.
Vet Microbiol ; 275: 109602, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395694

RESUMO

Aquatic bird bornavirus 1 (ABBV-1), classified in the Orthobornavirus genus, is a neurotropic virus that infects wild waterfowl causing persistent infection of the nervous system. Given the conspicuous presence of wild waterfowl in urban areas and farmlands, spillover of this virus into domesticated poultry species is a concern. The goal of this study was to test the ability of ABBV-1 to infect and cause disease in chickens. Two day-old, White Leghorn chickens (n, 176) were inoculated with ABBV-1 through the oral, intramuscular, or intracranial routes, and sampled at 1, 4, 8, and 12-weeks post infection (wpi) to assess virus replication and lesion development. Chickens became infected only through the intracranial and intramuscular routes, developing earliest infection in the brain by 1 wpi (intracranial group), and spinal cord by 8 wpi (intramuscular group). Except for the kidney of one bird in the intracranial group, no other tissues (including choanal and cloacal swabs) tested positive for the virus. Therefore, while the virus could reach the central nervous tissue (CNS) from the muscle in approximately 20% of birds (centripetal spread), it inefficiently reached peripheral sites after replication in the CNS (centrifugal spread). Inflammation in the CNS was observed in the intracranial and intramuscular groups starting at 8 and 12 wpi, respectively, and consisted of mononuclear perivascular cuffing. This is the first study to document the susceptibility of chickens to ABBV-1 infection, and indicates that this species can become infected with ABBV-1, although less extensively than what is observed in waterfowl. This suggests that ABBV-1 replication is partially restricted in gallinaceous birds.


Assuntos
Bornaviridae , Galinhas , Animais , Bornaviridae/genética , Fazendas , Replicação Viral , Encéfalo
6.
Viruses ; 14(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36298766

RESUMO

Aquatic bird bornavirus 1 (ABBV-1) is a neurotropic virus that infects waterfowls, resulting in persistent infection. Experimental infection showed that both Muscovy ducks and chickens support persistent ABBV-1 infection in the central nervous system (CNS), up to 12 weeks post-infection (wpi), without the development of clinical disease. The aim of the present study was to describe the transcriptomic profiles in the brains of experimentally infected Muscovy ducks and chickens infected with ABBV-1 at 4 and 12 wpi. Transcribed RNA was sequenced by next-generation sequencing and analyzed by principal component analysis (PCA) and differential gene expression. The functional annotation of differentially expressed genes was evaluated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The PCA showed that the infected ducks sampled at both 4 and 12 wpi clustered separately from the controls, while only the samples from the chickens at 12 wpi, but not at 4 wpi, formed a separate cluster. In the ducks, more genes were differentially expressed at 4 wpi than 12 wpi, and the majority of the highly differentially expressed genes (DEG) were upregulated. On the other hand, the infected chickens had fewer DEGs at 4 wpi than at 12 wpi, and the majority of those with high numbers of DEGs were downregulated at 4 wpi and upregulated at 12 wpi. The functional annotation showed that the most enriched GO terms were immune-associated in both species; however, the terms associated with the innate immune response were predominantly enriched in the ducks, whereas the chickens had enrichment of both the innate and adaptive immune response. Immune-associated pathways were also enriched according to the KEGG pathway analysis in both species. Overall, the transcriptomic analysis of the duck and chicken brains showed that the main biological responses to ABBV-1 infection were immune-associated and corresponded with the levels of inflammation in the CNS.


Assuntos
Bornaviridae , Vírus de RNA , Animais , Patos , Galinhas , Bornaviridae/genética , Perfilação da Expressão Gênica , Transcriptoma , Vírus de RNA/genética , Encéfalo , RNA/metabolismo
7.
Sci Rep ; 12(1): 16398, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180525

RESUMO

Aquatic bird bornavirus (ABBV-1), an avian bornavirus, has been reported in wild waterfowl from North America and Europe that presented with neurological signs and inflammation of the central and peripheral nervous systems. The potential of ABBV-1to infect and cause lesions in commercial waterfowl species is unknown. The aim of this study was to determine the ability of ABBV-1 to infect and cause disease in day-old Muscovy ducks (n = 174), selected as a representative domestic waterfowl. Ducklings became infected with ABBV-1 through both intracranial and intramuscular, but not oral, infection routes. Upon intramuscular infection, the virus spread centripetally to the central nervous system (brain and spinal cord), while intracranial infection led to virus spread to the spinal cord, kidneys, proventriculus, and gonads (centrifugal spread). Infected birds developed both encephalitis and myelitis by 4 weeks post infection (wpi), which progressively subsided by 8 and 12 wpi. Despite development of microscopic lesions, clinical signs were not observed. Only five birds had choanal and/or cloacal swabs positive for ABBV-1, suggesting a low potential of Muscovy ducks to shed the virus. This is the first study to document the pathogenesis of ABBV-1 in poultry species, and confirms the ability of ABBV-1 to infect commercial waterfowl.


Assuntos
Doenças das Aves , Bornaviridae , Influenza Aviária , Animais , Aves , Patos , Aves Domésticas
8.
J Comp Pathol ; 196: 6-10, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36008044

RESUMO

A 3-month-old, female rose-crowned parakeet (Pyrrhura rhodocephala) was found dead after a 24-h course of lethargy and passing blood-tinged faeces. Fine white streaks were seen in the pectoral muscles on necropsy. Microscopic examination revealed typical lesions of avian ganglioneuritis and vascular necrosis in the pectoral muscles, myocardium, kidneys, air sacs, adrenal glands, pancreas and thyroid gland. These lesions were characterized by mural fibrinoid necrosis of small and medium-calibre arteries and arterioles, associated with lymphoplasmacytic inflammation, necrosis, atrophy and fibrosis of the surrounding tissues. Parrot bornavirus (PaBV) nucleoprotein was demonstrated by immunohistochemistry in smooth muscle and endothelial cells of many vessels. An avian bornavirus was isolated from kidney tissue and its identity confirmed as PaBV-4 by sequencing and phylogenetic analysis. We postulate that the vascular lesions could have been immune-mediated and that PaBV-4 may have played a role in its pathogenesis.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Rosa , Vasculite , Animais , Doenças das Aves/patologia , Bornaviridae/fisiologia , Células Endoteliais/patologia , Feminino , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/veterinária , Necrose/veterinária , Periquitos , Filogenia , Vasculite/veterinária
9.
J Vis Exp ; (183)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35695536

RESUMO

Newcastle disease virus (NDV), also known as avian orthoavulavirus serotype-1, is a negative sense, single-stranded RNA virus that has been developed both as an oncolytic virus and a viral-vectored vaccine. NDV is an attractive therapeutic and prophylactic agent due to its well-established reverse genetics system, potent immunostimulatory properties, and excellent safety profile. When administered as an oncolytic virus or a viral-vectored vaccine, NDV elicits a robust antitumor or antigen-specific immune response, activating both the innate and adaptive arms of the immune system. Given these desirable characteristics, NDV has been evaluated in numerous clinical trials and is one of the most well-studied oncolytic viruses. Currently, there are two registered clinical trials involving NDV: one evaluating a recombinant NDV-vectored vaccine for SARS-CoV-2 (NCT04871737), and a second evaluating a recombinant NDV encoding Interleukin-12 in combination with Durvalumab, an antiPD-L1 antibody (NCT04613492). To facilitate further advancement of this highly promising viral vector, simplified methods for generating high-titer, in vivo-grade, recombinant NDV (rNDV) are needed. This paper describes a detailed procedure for amplifying rNDV in specified pathogen-free (SPF) embryonated chicken eggs and purifying rNDV from allantoic fluid, with improvements to reduce loss during purification. Also included are descriptions of the recommended quality control assays, which should be performed to confirm lack of contaminants and virus integrity. Overall, this detailed procedure enables the synthesis, purification, and storage of high-titer, in vivo-grade, recombinant, lentogenic, and mesogenic NDV for use in preclinical studies.


Assuntos
COVID-19 , Vírus Oncolíticos , Vacinas Virais , Animais , Vacinas contra COVID-19 , Galinhas , Humanos , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , SARS-CoV-2 , Vacinas Virais/genética
10.
iScience ; 24(11): 103219, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632328

RESUMO

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.

11.
Viruses ; 12(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171813

RESUMO

Aquatic bird bornavirus 1 (ABBV-1) is associated with chronic meningoencephalitis and ganglioneuritis. Although waterfowl species act as the natural host of ABBV-1, the virus has been sporadically isolated from other avian species, showing the potential for a broad host range. To evaluate the host restriction of ABBV-1, and its potential to infect commercial poultry species, we assessed the ability of ABBV-1 to replicate in cells and embryos of different avian species. ABBV-1 replication was measured using multi- and single-step growth curves in primary embryo fibroblasts of chicken, duck, and goose. Embryonated chicken and duck eggs were infected through either the yolk sac or chorioallantoic cavity, and virus replication was assessed by immunohistochemistry and RT-qPCR in embryonic tissues harvested at two time points after infection. Multi-step growth curves showed that ABBV-1 replicated and spread in goose and duck embryo fibroblasts, establishing a population of persistently infected cells, while it was unable to do so in chicken fibroblasts. Single-step growth curves showed that cells from all three species could be infected; however, persistence was only established in goose and duck fibroblasts. In ovo inoculation yielded no detectable viral replication or lesion in tissues. Data indicate that although chicken, duck, and goose embryo fibroblasts can be infected with ABBV-1, a persistent infection is more easily established in duck and goose cells. Therefore, ABBV-1 may be able to infect chickens in vivo, albeit inefficiently. Additionally, our data indicate that an in ovo model is inadequate to investigating ABBV-1 host restriction and pathogenesis.


Assuntos
Aves/virologia , Bornaviridae/fisiologia , Óvulo/virologia , Doenças das Aves Domésticas/virologia , Replicação Viral , Animais , Bornaviridae/patogenicidade , Células Cultivadas , Galinhas/virologia , Patos/virologia , Fibroblastos/virologia , Gansos/virologia , Cinética
12.
Virol J ; 17(1): 16, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005267

RESUMO

BACKGROUND: Aquatic bird bornavirus 1 (ABBV-1) has been associated with neurological diseases in wild waterfowls. In Canada, presence of ABBV-1 was demonstrated by RT-qPCR and immunohistochemistry in tissues of waterfowls with history of neurological disease and inflammation of the central and peripheral nervous tissue, although causation has not been proven by pathogenesis experiments, yet. To date, in vitro characterization of ABBV-1 is limited to isolation in primary duck embryo fibroblasts. The objectives of this study were to describe isolation of ABBV-1 in primary duck embryonic fibroblasts (DEF), and characterize replication in DEF and three immortalized avian fibroblast cell lines (duck CCL-141, quail QT-35, chicken DF-1) in order to evaluate cellular permissivity and identify suitable cell lines for routine virus propagation. METHODS: The virus was sequenced, and phylogenetic analysis performed on a segment of the N gene coding region. Virus spread in cell cultures, viral RNA and protein production, and titres were evaluated at different passages using immunofluorescence, RT-qPCR, western blotting, and tissue culture dose 50% (TCID50) assay, respectively. RESULTS: The isolated ABBV-1 showed 97 and 99% identity to European ABBV-1 isolate AF-168 and North American ABBV-1 isolates 062-CQ and CG-N1489, and could infect and replicate in DEF, CCL-141, QT-35 and DF-1 cultures. Viral RNA was detected in all four cultures with highest levels observed in DEF and CCL-141, moderate in QT-35, and lowest in DF-1. N protein was detected in western blots from infected DEF, CCL-141 and QT-35 at moderate to high levels, but minimally in infected DF-1. Infectious titre was highest in DEF (between approximately 105 to 106 FFU / 106 cells). Regarding immortalized cell lines, CCL-141 showed the highest titre between approximately 104 to 105 FFU / 106 cells. DF-1 produced minimal infectious titre. CONCLUSIONS: This study confirms the presence of ABBV-1 among waterfowl in Canada and reported additional in vitro characterization of this virus in different avian cell lines. ABBV-1 replicated to highest titre in DEF, followed by CCL-141 and QT-35, and poorly in DF-1. Our results showed that CCL-141 can be used instead of DEF for routine ABBV-1 production, if a lower titre is an acceptable trade-off for the simplicity of using immortalized cell line over primary culture.


Assuntos
Bornaviridae/isolamento & purificação , Bornaviridae/fisiologia , Fibroblastos/virologia , Replicação Viral , Animais , Doenças das Aves/virologia , Bornaviridae/classificação , Canadá , Técnicas de Cultura de Células , Linhagem Celular Transformada , Galinhas/virologia , Patos/virologia , Filogenia , Codorniz/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...