Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559232

RESUMO

Frequently, deep partial and full-thickness skin wounds do not spontaneously regenerate. To restore the normal function of skin, epidermal and dermal components have to be supplied to the wound bed by grafting various substrates. Available options are limited and frequently costly. Herein, authors present a possible approach using 3D skin scaffolds capable of mimicking structure and biological functions of the extracellular matrix, providing, in parallel, a good environment for cell attachment, proliferation and differentiation. Low-molecular weight chitosan-based membranes were prepared by freeze-drying and ionizing radiation techniques to be used as skin scaffolds. Poly (vinyl alcohol), PVA, vinyl pyrrolidone, VP, and gelatin from cold water fish were incorporated. Information regarding membranes' physical-chemical properties from SEM analysis, swelling and weight loss, together with biological response through in vitro assays (using Human Caucasian Fetal Foreskin Fibroblast) allowed the selection of an optimized batch of membranes that was used as skin scaffold in a dorsal rat model wound. The in vivo implantation assays (in Wistar rats) resulted in very promising results: (i) healing process faster than control; (ii) good vascularization; (iii) viable new tissues morphologically functional.

2.
Phys Chem Chem Phys ; 24(23): 14631-14639, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670365

RESUMO

The gas-phase reactions of noble gas (Ng) cations, namely Kr+ and Xe+, with SF6 were investigated experimentally by Fourier transform ion cyclotron resonance mass spectrometry and computationally using RI-MP2 and BCCD(T) methods. The study revealed a new interaction between Kr+ and neutral SF6 that gave rise to a new cationic, weakly bound complex of Kr, [KrSF5]+, although the major reaction channel was dissociative electron transfer to yield SF5+ and {Kr, F}. Experimental studies examined the formation and stability of the new species and computational studies addressed the energetics of the reaction and indicated that [KrSF5]+ is stable by ca. 1 kcal mol-1. The same computational approach was used to examine the reaction of Xe+ with SF6 and showed it to be thermodynamically unfavourable by ca. 35 kcal mol-1, confirming the non-observation of reaction in the mass spectrometry experiments. An analysis of the bonding in [KrSF5]+ clearly showed that it is a non-covalently bound species, while in its presumed precursor [KrSF6]+ a partially covalent Kr-F bond is present.

3.
Membranes (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436324

RESUMO

Some of the current strategies for the development of scaffolding materials capable of inducing tissue regeneration have been based on the use of polymeric biomaterials. Chitosan, in particular, due to its recognized biological activity has been used in a number of biomedical applications. Aiming the development of chitosan-based membranes with improved cell adhesion and growth properties to be used as skin scaffolds allowing functional tissue replacement, different formulations with chitosan of different molecular weight, poly (vinyl alcohol) and gelatin, were evaluated. To meet the goal of getting ready-to-use scaffolds assuring membranes' required properties and sterilization, preparation methodology included a lyophilization procedure followed by a final gamma irradiation step. Two radiation dose values were tested. Samples were characterized by TGA, FTIR, and SEM techniques. Their hydrophilic properties, in vitro stability, and biocompatibility were also evaluated. Results show that all membranes present a sponge-type inner structure. Chitosan of low molecular weight and the introduction of gelatin are more favorable to cellular growth leading to an improvement on cells' morphology and cytoskeletal organization, giving a good perspective to the use of these membranes as potential skin scaffolds.

4.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443420

RESUMO

Searching in the Web of Knowledge for "ionic liquids" AND "luminescence" AND "lanthanide", around 260 entries can be found, of which a considerable number refer solely or primarily to europium (90%, ~234). Europium has been deemed the best lanthanide for luminescent applications, mainly due to its efficiency in sensitization, longest decay times, and the ability to use its luminescence spectra to probe the coordination geometry around the metal. The remaining lanthanides can also be of crucial importance due to their different colors, sensitivity, and capability as probes. In this manuscript, we intend to shed some light on the existing published work on the remaining lanthanides. In some cases, they appear in papers with europium, but frequently in a subordinate position, and in fewer cases then the main protagonist of the study. All of them will be assessed and presented in a concise manner; they will be divided into two main categories: lanthanide compounds dissolved in ionic liquids, and lanthanide-based ionic liquids. Finally, some analysis of future trends is carried out highlighting some future promising fields, such as ionogels.

5.
Chempluschem ; 85(12): 2629-2635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33274839

RESUMO

An emissive europium(III) complex [C2 mim][Eu(fod)4 ] (1; C2 mim=1-ethyl-3-methyl-imidazolium; fod=1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate) was prepared. The complex shows ratiometric thermal behaviour up to 155 °C. These unusual temperature-dependent properties arise from a solid-solid phase transition that promotes increased contact between the anion and the cation, affecting the emission profile of the emissive anion in two different ratiometric relations. A ultrabright and flexible emissive photopolymer film was obtained using polysulfone (PSU) as the host matrix of 10 % (w/w) of 1, that also induced changes on the lanthanide emissive profile with temperature. A temperature-responsive luminescent film 1/PSU is sensitivr to heating between 100 and 155 °C. Also, the emission lifetime of 1 was not affected by confinement in PSU, while its emission quantum yield was reduced from 82 to 59 %.

6.
Phys Chem Chem Phys ; 20(15): 9838-9846, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29610796

RESUMO

Ionic-liquid-based acidic aqueous biphasic systems (IL-based AcABS) represent a promising alternative to the solvent extraction process for the recovery of critical metals, in which the substitution of the inorganic salt by an acid allows for a 'one-pot' approach to the leaching and separation of metals. However, a more fundamental understanding of AcABS formation remains wanting. In this work, the formation mechanisms of AcABS are elucidated through a comparison with traditional aqueous biphasic systems (ABS). A large screening of AcABS formation with a wide range of IL identifies the charge shielding of the cation as the primary structural driver for the applicability of an IL in AcABS. Through a systematic study of tributyltetradecylphosphonium chloride ([P44414]Cl) with various chloride salts and acids, we observed the first significant deviation to the cationic Hofmeister series reported for IL-based ABS. Furthermore, the weaker than expected salting-out ability of H3O+ compared to Na+ is attributed to the greater interaction of H3O+ with the [P44414]+ micelle surface. Finally, the remarkable thermomorphic properties of [P44414]Cl based systems are investigated with a significant increase in the biphasic region induced by the increase in the temperature from 298 K to 323 K. These finding allows for the extension of ABS to new acidic systems and highlights their versatility and tunability.

7.
J Cheminform ; 5(1): 9, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23399299

RESUMO

BACKGROUND: One of the main topics in the development of quantitative structure-property relationship (QSPR) predictive models is the identification of the subset of variables that represent the structure of a molecule and which are predictors for a given property. There are several automated feature selection methods, ranging from backward, forward or stepwise procedures, to further elaborated methodologies such as evolutionary programming. The problem lies in selecting the minimum subset of descriptors that can predict a certain property with a good performance, computationally efficient and in a more robust way, since the presence of irrelevant or redundant features can cause poor generalization capacity. In this paper an alternative selection method, based on Random Forests to determine the variable importance is proposed in the context of QSPR regression problems, with an application to a manually curated dataset for predicting standard enthalpy of formation. The subsequent predictive models are trained with support vector machines introducing the variables sequentially from a ranked list based on the variable importance. RESULTS: The model generalizes well even with a high dimensional dataset and in the presence of highly correlated variables. The feature selection step was shown to yield lower prediction errors with RMSE values 23% lower than without feature selection, albeit using only 6% of the total number of variables (89 from the original 1485). The proposed approach further compared favourably with other feature selection methods and dimension reduction of the feature space. The predictive model was selected using a 10-fold cross validation procedure and, after selection, it was validated with an independent set to assess its performance when applied to new data and the results were similar to the ones obtained for the training set, supporting the robustness of the proposed approach. CONCLUSIONS: The proposed methodology seemingly improves the prediction performance of standard enthalpy of formation of hydrocarbons using a limited set of molecular descriptors, providing faster and more cost-effective calculation of descriptors by reducing their numbers, and providing a better understanding of the underlying relationship between the molecular structure represented by descriptors and the property of interest.

8.
Chemphyschem ; 11(17): 3673-7, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21058381

RESUMO

The vaporization of a dicationic ionic liquid at moderate temperatures and under reduced pressures--recently studied by line-of-sight mass spectrometry--was further analyzed using an ion-cyclotron resonance mass spectroscopy technique that allows the monitoring of the different species present in the gas phase through the implementation of controlled ion-molecule reactions. The results support the view that the vapour phase of an aprotic dicationic ionic liquid is composed of neutral ion triplets (one dication attached to two anions). Molecular dynamics simulations were also performed in order to explain the magnitude of the vaporization enthalpies of dicationic ionic liquids vis-à-vis their monocationic counterparts.

9.
J Phys Chem B ; 114(27): 8905-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568799

RESUMO

The sublimation/vaporization of the protic ionic liquid 1,1,3,3-tetramethylguanidinium chloride, [Htmg]Cl, was studied by Fourier transform ion cyclotron resonance mass spectrometry in the temperature range 298-488 K and under a reduced pressure of 3.2 x 10(-6) to 1.5 x 10(-5) Pa. The results show that no charged species are present in the vapor over the condensed phase. Furthermore, ion-molecule reaction studies found no evidence of neutral ion pairs in the gas phase. This indicates that the sublimation/vaporization of [Htmg]Cl conforms to the general mechanism postulated for the distillation of protic ionic liquids, which involves a proton transfer leading to the formation of the neutral acid and base precursors, in this case hydrogen chloride and 1,1,3,3-tetramethylguanidine.

10.
J Phys Chem B ; 113(11): 3491-8, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19278265

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry experiments showed that liquid Group 1 metal salts of the bistriflamide anion undergoing reduced-pressure distillation exhibit a remarkable behavior that is in transition between that of the vapor-liquid equilibrium characteristics of aprotic ionic liquids and that of the Group 1 metal halides: the unperturbed vapors resemble those of aprotic ionic liquids, in the sense that they are essentially composed of discrete ion pairs. However, the formation of large aggregates through a succession of ion-molecule reactions is closer to what might be expected for Group 1 metal halides. Similar experiments were also carried out with bis{(trifluoromethyl)sulfonyl}amine to investigate the effect of H(+), which despite being the smallest Group 1 cation, is generally regarded as a nonmetal species. In this case, instead of the complex ion-molecule reaction pattern found for the vapors of Group 1 metal salts, an equilibrium similar to those observed for aprotic ionic liquids was observed.


Assuntos
Amidas/química , Hidrocarbonetos Fluorados/química , Íons/química , Metais/química , Sais/química , Algoritmos , Ânions , Espectroscopia de Ressonância Magnética , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
11.
J Phys Chem A ; 111(35): 8741-8, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17691757

RESUMO

Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.


Assuntos
Cresóis/química , Fenóis/química , Calorimetria , Termodinâmica
12.
J Phys Chem A ; 111(28): 6176-82, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17585852

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) experiments showed that when aprotic ionic liquids vaporize under pressure and temperature conditions similar to those of a reduced-pressure distillation, the gas phase is composed of discrete anion-cation pairs. The evolution of the mass spectrometric signals recorded during fractional distillations of binary ionic liquid mixtures allowed us to monitor the changes of the gas-phase composition and the relative volatility of the components. In addition, we have studied a protic ionic liquid, and demonstrated that it exists as separated neutral molecules in the gas phase.

13.
Chemistry ; 9(9): 2095-101, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12740858

RESUMO

The bonding energetics in a variety of alkaline metal, alkoxides and phenoxides, MOR, was investigated based on the corresponding enthalpies of formation in the crystalline state determined by reaction-solution calorimetry. The results obtained at 298.15 K were as follows: Delta(f)H(m)(o)(MOR, cr)/kJ mol(-1) = 382.7+/-1.4 (LiOC(6)H(5)), 513.6+/-2.5 (NaO-nC(6)H(13)), 326.4+/-1.4 (NaOC(6)H(5)), 375.2+/-3.4 (KOCH(3)), 434.5+/-2.7 (KOC(2)H(5)), 467.1+/-5.2 (KO-nC(3)H(7)), 459.3+/-2.1 (KO-nC(4)H(9)), 464.6+/-5.7 (KO-tC(4)H(9)), 464.3+/-2.5 (KO-nC(6)H(13)), 333.3+/-3.1 (KOC(6)H(5)), 380.6+/-2.9 (RbOCH(3)), 434.1+/-2.9 (RbOC(2)H(5)), 345.3+/-2.9 (LiOC(6)H(5)), 379.1+/-3.0 (CsOCH(3)), 432.3+/-3.1 (CsOC(2)H(5)), 466.9+/-5.0 (CsO-nC(3)H(7)), 461.3+/-3.5 (CsO-nC(4)H(9)), 461.9+/-2.5 (CsO-tC(4)H(9)), 349.2+/-1.4 (CsOC(6)H(5)). These results together with revised Delta(f)H(m)(o)(MOR, cr) values from the literature, were used to derive a consistent set of lattice energies for the MOR compounds and discuss general trends in the structure-energetics relationship based on the Kapustinskii equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...