RESUMO
Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug's absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water-gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water-gas interface. Concurrently, we observed that at the water-gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug's bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug's translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.
Assuntos
Dióxido de Carbono , Modelos Animais de Doenças , Hipotireoidismo , Tiroxina , Água , Animais , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Camundongos , Dióxido de Carbono/química , Água/química , Camundongos Endogâmicos C57BL , Administração Oral , Nanopartículas/química , Portadores de Fármacos/químicaRESUMO
The conformational changes of poly(maleic anhydride-alt-styrene) (PSMA) modified with different amino acids (PSMA-Aa) were studied in an aqueous medium as a function of ionic strength and pH. The specific viscosity of PSMA-Aa decreased with increasing salt concentration due to a more compact conformation. There was a decrease in surface tension with increasing concentrations of the modified polyelectrolyte having a greater effect for the PSMA modified with l-phenylalanine at pH 7.0, demonstrating a greater surface-active character. The conformational changes were also confirmed by molecular dynamics studies, indicating that PSMA-Aa exhibits a compact structure at pH 4.0 and a more extended structure at pH 7.0. On the other hand, the conformational changes of PSMA-Aa were related to its biological response, where the higher surface-active character of the PSMA modified with l-phenylalanine correlates very well with the higher hemolytic activity observed in red blood cells, in which the surface-active capacity supports lytic potency in erythrocytes. The cytocompatibility assays indicated that there were no significant cytotoxic effects of the PSMA-Aa. Additionally, in solvent-accessible surface area studies, it was shown that the carboxylate groups of the PSMA modified with l-phenylalanine are more exposed to the solvent at pH 7.0 and high salt concentrations, which correlates with lower fluorescence intensity, reflecting a loss of mitochondrial membrane potential. It is concluded that the study of the conformational changes in PE modified with amino acids is essential for their use as biomaterials and relevant to understanding the possible effects of PE modified with amino acids in biological systems.
Assuntos
Aminoácidos , Anidridos Maleicos , Humanos , Anidridos Maleicos/química , Poliestirenos/química , Água , Fenilalanina , Hemólise , SolventesRESUMO
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) (P4VPy). The characteristics of the nanofibers obtained proved to be dependent on the proportion of polymer in the blends. The nanofibers obtained were used to synthesize, in situ, gold nanoparticles on their surface by two-step procedure. Firstly, the adsorption of precursor ions on the nanofibers and then their reduction with sodium borohydride to generate gold nanoparticles. The results indicated a significant improvement in the performance of PIL-containing nanofibers over pure P4VPy NFs during ion adsorption, reaching a 20% increase in the amount of adsorbed ions and a 6-fold increase in the respective adsorption constant. The catalytic performance of the obtained hybrid systems in the reduction reaction of 4-nitrophenol to 4-aminophenol was studied. Higher catalytic conversions were obtained using the hybrid nanofibers containing PIL and gold nanoparticles achieving a maximum conversion rate of 98%. Remarkably, the highest value of kinetic constant was obtained for the nanofibers with the highest PIL content.
RESUMO
Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.
Assuntos
Pseudomonas putida , Trinitrotolueno , Oxirredutases/metabolismo , Pseudomonas putida/metabolismo , Xenobióticos , Trinitrotolueno/química , Trinitrotolueno/metabolismo , Simulação de Dinâmica MolecularRESUMO
The prevalence of chronic and acute wounds, as well as the complexity of their treatment represent a great challenge for health systems around the world. In this context, the development of bioactive wound dressings that release active agents to prevent infections and promote wound healing, appears as the most promising solution. In this work, we develop an antibacterial and biocompatible wound dressing material made from coaxial electrospun fibers of poly(styrene-co-maleic anhydride) and poly(vinyl alcohol) (PSMA@PVA). The coaxial configuration of the fibers consists of a shell of poly (styrene-co-maleic anhydride) containing a variable concentration of silver nanoparticles (AgNPs) 0.1-0.6 wt% as antibacterial agent, and a core of PVA containing 1 wt% allantoin as healing agent. The fibers present diameters between 0.72 and 1.7 µm. The release of Ag+ in a physiological medium was studied for 72 h, observing a burst release during the first 14 h and then a sustained and controlled release during the remaining 58 h. Allantoin release curves showed significant release only after 14 h. The meshes showed an antibacterial activity against Pseudomonas aeruginosa and Bacillus subtilis that correlates with the amount of AgNPs incorporated and the release rate of Ag+. Indeed, meshes containing 0.3 and 0.6 wt% of AgNPs showed a 99.99% inhibition against both bacteria. The adherence and cell viability of the meshes were evaluated in mouse embryonic fibroblasts NIH/3T3, observing a significant increase in cell viability after 72 h of incubation accompanied by a reduced adhesion of fibroblasts that decreased in the presence of the active agents. These results show that the material prepared here is capable of significantly promoting fibroblast cell proliferation but without strong adherence, which makes it an ideal material for wound dressings with non-adherent characteristics and with potential for wound healing.
Assuntos
Nanopartículas Metálicas , Álcool de Polivinil , Animais , Bandagens , Proliferação de Células , Fibroblastos , Maleatos , Anidridos Maleicos , Camundongos , Poliestirenos , Prata , EstirenoRESUMO
Ang-(1-9) peptide is a bioactive vasodilator peptide that prevents cardiomyocyte hypertrophy in vitro and in vivo as well as lowers blood pressure and pathological cardiovascular remodeling; however, it has a reduced half-life in circulation, requiring a suitable carrier for its delivery. In this work, hybrid nanoparticles composed of polymeric nanoparticles (pNPs) based on Eudragit® E/Alginate (EE/Alg), and gold nanospheres (AuNS), were developed to evaluate their encapsulation capacity and release of Ang-(1-9) under different experimental conditions. Hybrid pNPs were characterized by dynamic light scattering, zeta potential, transmission and scanning electron microscopy, size distribution, and concentration by nanoparticle tracking analysis. Nanometric pNPs, with good polydispersity index and colloidally stable, produced high association efficiency of Ang-(1-9) and controlled release. Finally, the treatment of neonatal cardiomyocytes in culture with EE/Alg/AuNS 2% + Ang-(1-9) 20% pNPs decreased the area and perimeter, demonstrating efficacy in preventing norepinephrine-induced cardiomyocyte hypertrophy. On the other hand, the incorporation of AuNS did not cause negative effects either on the cytotoxicity or on the association capacity of Ang-(1-9), suggesting that the hybrid carrier EE/Alg/AuNS pNPs could be used for the delivery of Ang-(1-9) in the treatment of cardiovascular hypertrophy.