Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012667

RESUMO

Pannexin 1 (PANX1) was proposed to drive ATP release from red blood cells (RBCs) in response to stress conditions. Stomatin, a membrane protein regulating mechanosensitive channels, has been proposed to modulate PANX1 activity in non-erythroid cells. To determine whether stomatin modulates PANX1 activity in an erythroid context, we have (i) assessed the in situ stomatin-PANX1 interaction in RBCs, (ii) measured PANX1-stimulated activity in RBCs expressing stomatin or from OverHydrated Hereditary Stomatocytosis (OHSt) patients lacking stomatin, and in erythroid K562 cells invalidated for stomatin. Proximity Ligation Assay coupled with flow imaging shows 27.09% and 6.13% positive events in control and OHSt RBCs, respectively. The uptake of dyes 5(6)-Carboxyfluorescein (CF) and TO-PRO-3 was used to evaluate PANX1 activity. RBC permeability for CF is 34% and 11.8% in control and OHSt RBCs, respectively. PANX1 permeability for TO-PRO-3 is 35.72% and 18.42% in K562 stom+ and stom- clones, respectively. These results suggest an interaction between PANX1 and stomatin in human RBCs and show a significant defect in PANX1 activity in the absence of stomatin. Based on these results, we propose that stomatin plays a major role in opening the PANX1 pore by being involved in a caspase-independent lifting of autoinhibition.


Assuntos
Desequilíbrio Ácido-Base , Conexinas , Eritrócitos , Proteínas de Membrana , Proteínas do Tecido Nervoso , Desequilíbrio Ácido-Base/metabolismo , Trifosfato de Adenosina/metabolismo , Anemia Hemolítica Congênita , Conexinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos Anormais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Erros Inatos do Metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Sci Rep ; 8(1): 11384, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061676

RESUMO

We previously demonstrated that the translocase protein TSPO2 together with the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT) were involved in a membrane transport complex in human red blood cells (RBCs). Because VDAC was proposed as a channel mediating ATP release in RBCs, we used TSPO ligands together with VDAC and ANT inhibitors to test this hypothesis. ATP release was activated by TSPO ligands, and blocked by inhibitors of VDAC and ANT, while it was insensitive to pannexin-1 blockers. TSPO ligand increased extracellular ATP (ATPe) concentration by 24-59% over the basal values, displaying an acute increase in [ATPe] to a maximal value, which remained constant thereafter. ATPe kinetics were compatible with VDAC mediating a fast but transient ATP efflux. ATP release was strongly inhibited by PKC and PKA inhibitors as well as by depleting intracellular cAMP or extracellular Ca2+, suggesting a mechanism involving protein kinases. TSPO ligands favoured VDAC polymerization yielding significantly higher densities of oligomeric bands than in unstimulated cells. Polymerization was partially inhibited by decreasing Ca2+ and cAMP contents. The present results show that TSPO ligands induce polymerization of VDAC, coupled to activation of ATP release by a supramolecular complex involving VDAC, TSPO2 and ANT.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Eritrócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Canais de Ânion Dependentes de Voltagem/metabolismo , Translocador 1 do Nucleotídeo Adenina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Cinética , Ligantes , Modelos Biológicos , Polimerização , Proteína Quinase C/metabolismo , Receptores de GABA/metabolismo
3.
Biochem J ; 474(8): 1395-1416, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28246335

RESUMO

We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1-1 µM). Exposure to MST7 and MEL enhanced ATP release by 3-7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6-7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.


Assuntos
Trifosfato de Adenosina/metabolismo , Enterócitos/metabolismo , Escherichia coli/fisiologia , Vesículas Extracelulares/metabolismo , Jejuno/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células CACO-2 , Técnicas de Cocultura , Enterócitos/ultraestrutura , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Vesículas Extracelulares/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular , Jejuno/ultraestrutura , Cinética , Luminescência , Meliteno/metabolismo , Microscopia Eletrônica , Peptídeos , Monoéster Fosfórico Hidrolases/metabolismo , Ratos Wistar
4.
Biochim Biophys Acta ; 1830(10): 4692-707, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742824

RESUMO

BACKGROUND: The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). METHODS: Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. RESULTS: Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10µM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. CONCLUSIONS: MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. GENERAL SIGNIFICANCE: Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Cães , Eritrócitos/metabolismo , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Camundongos , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA