Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Comp Neurol ; 532(7): e25655, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980080

RESUMO

This study used a marsupial Monodelphis domestica, which is born very immature and most of its development is postnatal without placental protection. RNA-sequencing (RNA-Seq) was used to identify the expression of influx and efflux transporters (ATP-binding cassettes [ABCs] and solute carriers [SLCs]) and metabolizing enzymes in brains of newborn to juvenile Monodelphis. Results were compared to published data in the developing eutherian rat. To test the functionality of these transporters at similar ages, the entry of paracetamol (acetaminophen) into the brain and cerebrospinal fluid (CSF) was measured using liquid scintillation counting following a single administration of the drug along with its radiolabelled tracer [3H]. Drug permeability studies found that in Monodelphis, brain entry of paracetamol was already restricted at P5; it decreased further in the first week of life and then remained stable until the oldest age group tested (P110). Transcriptomic analysis of Monodelphis brain showed that expression of transporters and their metabolizing enzymes in early postnatal (P) pups (P0, P5, and P8) was relatively similar, but by P109, many more transcripts were identified. When transcriptomes of newborn Monodelphis brain and E19 rat brain and placenta were compared, several transporters present in the rat placenta were also found in the newborn Monodelphis brain. These were absent from E19 rat brain but were present in the adult rat brain. These data indicate that despite its extreme immaturity, the newborn Monodelphis brain may compensate for the lack of placental protection during early brain development by upregulating protective mechanisms, which in eutherian animals are instead present in the placenta.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Encéfalo , Monodelphis , Animais , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Monodelphis/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais Recém-Nascidos , Acetaminofen , Proteínas Carreadoras de Solutos/metabolismo , Feminino , Ratos
2.
Genes (Basel) ; 15(5)2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790197

RESUMO

Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.


Assuntos
Doença de Alzheimer , Estresse do Retículo Endoplasmático , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Tapsigargina/farmacologia , Demência/genética , Demência/metabolismo , Demência/patologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Masculino , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Neurogênese , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Feminino , Resposta a Proteínas não Dobradas , Fator de Transcrição CHOP
3.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474333

RESUMO

A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Carga Viral , Imunidade Inata , Colesterol
4.
Macromol Biosci ; 24(2): e2300289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717210

RESUMO

The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the ß-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.


Assuntos
Queimaduras , Polietilenoimina , Humanos , Materiais Biocompatíveis , Hidrogéis/farmacologia , Polietilenoglicóis , Luz , Queimaduras/terapia
5.
Vaccines (Basel) ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140266

RESUMO

A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.

6.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35863821

RESUMO

BACKGROUND: Inhibiting programmed cell death protein 1 (PD-1) or PD-ligand 1 (PD-L1) has shown exciting clinical outcomes in diverse human cancers. So far, only monoclonal antibodies are approved as PD-1/PD-L1 inhibitors. While significant clinical outcomes are observed on patients who respond to these therapeutics, a large proportion of the patients do not benefit from the currently available immune checkpoint inhibitors, which strongly emphasize the importance of developing new immunotherapeutic agents. METHODS: In this study, we followed a transdisciplinary approach to discover novel small molecules that can modulate PD-1/PD-L1 interaction. To that end, we employed in silico analyses combined with in vitro, ex vivo, and in vivo experimental studies to assess the ability of novel compounds to modulate PD-1/PD-L1 interaction and enhance T-cell function. RESULTS: Accordingly, in this study we report the identification of novel small molecules, which like anti-PD-L1/PD-1 antibodies, can stimulate human adaptive immune responses. Unlike these biological compounds, our newly-identified small molecules enabled an extensive infiltration of T lymphocytes into three-dimensional solid tumor models, and the recruitment of cytotoxic T lymphocytes to the tumor microenvironment in vivo, unveiling a unique potential to transform cancer immunotherapy. CONCLUSIONS: We identified a new promising family of small-molecule candidates that regulate the PD-L1/PD-1 signaling pathway, promoting an extensive infiltration of effector CD8 T cells to the tumor microenvironment.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Antígeno B7-H1/metabolismo , Humanos , Ligantes , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral
7.
Front Cardiovasc Med ; 9: 889985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734277

RESUMO

Introduction: Cardiovascular disease (CVD) is the leading cause of mortality worldwide and is the leading cause of death in the US. Lipid dysregulation is a well-known precursor to metabolic diseases, including CVD. There is a growing body of literature that suggests MRI-derived epicardial fat volume, or epicardial adipose tissue (EAT) volume, is linked to the development of coronary artery disease. Interestingly, epicardial fat is also actively involved in lipid and energy homeostasis, with epicardial adipose tissue having a greater capacity for release and uptake of free fatty acids. However, there is a scarcity of knowledge on the influence of plasma lipids on EAT volume. Aim: The focus of this study is on the identification of novel lipidomic species associated with CMRI-derived measures of epicardial fat in Mexican American individuals. Methods: We performed lipidomic profiling on 200 Mexican American individuals. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing measures of 799 unique species from circulating plasma samples. Because of our extended pedigree design, we utilized a standard quantitative genetic linear mixed model analysis to determine whether lipids were correlated with EAT by formally testing for association between each lipid species and the CMRI epicardial fat phenotype. Results: After correction for multiple testing using the FDR approach, we identified 135 lipid species showing significant association with epicardial fat. Of those, 131 lipid species were positively correlated with EAT, where increased circulating lipid levels were correlated with increased epicardial fat. Interestingly, the top 10 lipid species associated with an increased epicardial fat volume were from the deoxyceramide (Cer(m)) and triacylglycerol (TG) families. Deoxyceramides are atypical and neurotoxic sphingolipids. Triacylglycerols are an abundant lipid class and comprise the bulk of storage fat in tissues. Pathologically elevated TG and Cer(m) levels are related to CVD risk and, in our study, to EAT volume. Conclusion: Our results indicate that specific lipid abnormalities such as enriched saturated triacylglycerols and the presence of toxic ceramides Cer(m) in plasma of our individuals could precede CVD with increased EAT volume.

8.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34751383

RESUMO

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


Assuntos
Monodelphis , Animais , Genoma , Genômica , Humanos , Laboratórios , Monodelphis/genética , Filogenia
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805011

RESUMO

The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10-9), primary heart tissue (p-value = 1.37 × 10-41) and cardiomyopathy (p-value = 1.13 × 10-21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.


Assuntos
Cardiomiopatias/genética , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Cardiomiopatias/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Criopreservação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Linfócitos/citologia , Fenótipo , RNA Mensageiro/metabolismo , Risco , Transcriptoma
10.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920964

RESUMO

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process-however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Assuntos
Queimaduras/fisiopatologia , Composição de Medicamentos , Insulina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Regeneração , Pele/fisiopatologia , Administração Tópica , Animais , Sobrevivência Celular , Dicroísmo Circular , Liberação Controlada de Fármacos , Feminino , Células HaCaT , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Estabilidade Proteica , Eletricidade Estática , Fatores de Tempo
11.
Circ Genom Precis Med ; 14(3): e003232, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887960

RESUMO

BACKGROUND: The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS: We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS: In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (ß=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS: Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Aterosclerose , Mutação com Perda de Função , Americanos Mexicanos , Fosfatidilinositóis , Adulto , Proteína 3 Semelhante a Angiopoietina/sangue , Proteína 3 Semelhante a Angiopoietina/genética , Aterosclerose/sangue , Aterosclerose/genética , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Fosfatidilinositóis/sangue , Fosfatidilinositóis/genética
12.
Front Immunol ; 12: 630988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717164

RESUMO

Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.


Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologia
13.
Commun Biol ; 4(1): 152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526843

RESUMO

Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFß and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.


Assuntos
Biomarcadores Tumorais , Proliferação de Células , Recidiva Local de Neoplasia/veterinária , Papiloma/veterinária , Neoplasias Cutâneas/veterinária , Infecções Tumorais por Vírus/veterinária , Tartarugas , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Imuno-Histoquímica , Papiloma/genética , Papiloma/metabolismo , Papiloma/cirurgia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/cirurgia , Transcriptoma , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/cirurgia
14.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977388

RESUMO

miRNA regulates the expression of protein coding genes and plays a regulatory role in human development and disease. The human iPSCs and their differentiated progenies provide a unique opportunity to identify these miRNA-mediated regulatory mechanisms. To identify miRNA-mRNA regulatory interactions in human nervous system development, well characterized NSCs were differentiated from six validated iPSC lines and analyzed for differentially expressed (DE) miRNome and transcriptome by RNA sequencing. Following the criteria, moderated t statistics, FDR-corrected p-value ≤ 0.05 and fold change-absolute (FC-abs) ≥2.0, 51 miRNAs and 4033 mRNAs were found to be significantly DE between iPSCs and NSCs. The miRNA target prediction analysis identified 513 interactions between 30 miRNA families (mapped to 51 DE miRNAs) and 456 DE mRNAs that were paradoxically oppositely expressed. These 513 interactions were highly enriched in nervous system development functions (154 mRNAs; FDR-adjusted p-value range: 8.06 × 10-15-1.44 × 10-4). Furthermore, we have shown that the upregulated miR-10a-5p, miR-30c-5p, miR23-3p, miR130a-3p and miR-17-5p miRNA families were predicted to down-regulate several genes associated with the differentiation of neurons, neurite outgrowth and synapse formation, suggesting their role in promoting the self-renewal of undifferentiated NSCs. This study also provides a comprehensive characterization of iPSC-generated NSCs as dorsal neuroepithelium, important for their potential use in in vitro modeling of human brain development and disease.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs , Células-Tronco Neurais/metabolismo , RNA Mensageiro , RNA-Seq , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
15.
Biotechnol J ; 15(9): e2000151, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32578939

RESUMO

One of the trends in downstream processing comprises the use of "anything-but-chromatography" methods to overcome the current downfalls of standard packed-bed chromatography. Precipitation and magnetic separation are two techniques already proven to accomplish protein purification from complex media, yet never used in synergy. With the aim to capture antibodies directly from crude extracts, a new approach combining precipitation and magnetic separation is developed and named as affinity magnetic precipitation. A precipitation screening, based on the Hofmeister series, and a commercial precipitation kit are tested with affinity magnetic particles to assess the best condition for antibody capture from human serum plasma and clarified cell supernatant. The best conditions are obtained when using PEG3350 as precipitant at 4 °C for 1 h, reaching 80% purity and 50% recovery of polyclonal antibodies from plasma, and 99% purity with 97% recovery yield of anti-TNFα mAb from cell supernatants. These results show that the synergetic use of precipitation and magnetic separation can represent an alternative for the efficient capture of antibodies.


Assuntos
Anticorpos Monoclonais , Magnetismo , Precipitação Química , Cromatografia de Afinidade , Meios de Cultura , Humanos , Fenômenos Magnéticos
16.
Am J Stem Cells ; 8(2): 28-37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523484

RESUMO

A large number of Epstein Barr virus (EBV) immortalized lymphoblastoid cell lines (LCLs) have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into induced pluripotent stem cells (iPSCs) has paved the way to generate more relevant in vitro disease models using this existing bioresource. However, the latent EBV infection in the LCLs make them a unique cell type by altering expression of many cellular genes and miRNAs. These EBV induced changes in the LCL miRNome and transcriptome are reversed upon reprogramming into iPSCs, which allows a unique opportunity to better understand the miRNA and mRNA interactions that are EBV induced in LCLs and the changes that takes place during iPSC reprogramming. To identify the potential miRNA-mRNA interactions and better understand their role in regulating the cellular transitions in LCLs and their reprogrammed iPSCs, we performed a parallel genome-wide miRNA and mRNA expression analysis in six LCLs and their reprogrammed iPSCs. A total of 85 miRNAs and 5,228 mRNAs were significantly differentially expressed (DE). The target prediction of the DE miRNAs using TargetScan-Human, TarBase and miRecords databases identified 1,842 mRNA targets that were DE between LCLs and their reprogrammed iPSCs. The functional annotation, upstream regulator and gene expression analysis of the predicted DE mRNA targets suggest the role of DE miRNAs in regulating EBV induced changes in LCLs and self-renewal, pluripotency and differentiation in iPSCs.

17.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227640

RESUMO

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Assuntos
Ceramidas/biossíntese , Ácidos Graxos Dessaturases/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Feminino , Genótipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
18.
Hum Brain Mapp ; 40(14): 4180-4191, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187567

RESUMO

White matter microstructure is affected by immune system activity via the actions of circulating pro-inflammatory cytokines. Although white matter microstructure and inflammatory measures are significantly heritable, it is unclear if overlapping genetic factors influence these traits in humans. We conducted genetic correlation analyses of these traits using randomly ascertained extended pedigrees from the Genetics of Brain Structure and Function Study (N = 1862, 59% females, ages 18-97 years; 42 ± 15.7). White matter microstructure was assessed using fractional anisotropy (FA) calculated from diffusion tensor imaging (DTI). Circulating levels (pg/mL) of pro-inflammatory cytokines (IL-6, IL-8, and TNFα) phenotypically associated with white matter microstructure were quantified from blood serum. All traits were significantly heritable (h2 ranging from 0.41 to 0.66 for DTI measures and from 0.18 to 0.30 for inflammatory markers). Phenotypically, higher levels of circulating inflammatory markers were associated with lower FA values across the brain (r = -.03 to r = -.17). There were significant negative genetic correlations between most DTI measures and IL-8 and TNFα, although effects for TNFα were no longer significant when covarying for body mass index. Genetic correlations between DTI measures and IL-6 were not significant. Understanding the genetic correlation between specific inflammatory markers and DTI measures may help researchers focus questions related to inflammatory processes and brain structure.


Assuntos
Córtex Cerebral/anatomia & histologia , Citocinas/genética , Inflamação/genética , Padrões de Herança , Substância Branca/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Citocinas/sangue , Imagem de Tensor de Difusão , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
19.
Brain Behav Immun ; 80: 292-299, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30953777

RESUMO

BACKGROUND: Suicide is major public health concern. It is imperative to find robust biomarkers so that at-risk individuals can be identified in a timely and reliable manner. Previous work suggests mechanistic links between increased cytokines and risk for suicide, but questions remain regarding the etiology of this association, as well as the roles of sex and BMI. METHODS: Analyses were conducted using a randomly-ascertained extended-pedigree sample of 1882 Mexican-American individuals (60% female, mean age = 42.04, range = 18-97). Genetic correlations were calculated using a variance components approach between the cytokines TNF-α, IL-6 and IL-8, and Lifetime Suicide Attempt and Current Suicidal Ideation. The potentially confounding effects of sex and BMI were considered. RESULTS: 159 individuals endorse a Lifetime Suicide Attempt. IL-8 and IL-6 shared significant genetic overlap with risk for suicide attempt (ρg = 0.49, pFDR = 7.67 × 10-03; ρg = 0.53, pFDR = 0.01), but for IL-6 this was attenuated when BMI was included as a covariate (ρg = 0.37, se = 0.23, pFDR = 0.12). Suicide attempts were significantly more common in females (pFDR = 0.01) and the genetic overlap between IL-8 and risk for suicide attempt was significant in females (ρg = 0.56, pFDR = 0.01), but not in males (ρg = 0.44, pFDR = 0.30). DISCUSSION: These results demonstrate that: IL-8 shares genetic influences with risk for suicide attempt; females drove this effect; and BMI should be considered when assessing the association between IL-6 and suicide. This finding represents a significant advancement in knowledge by demonstrating that cytokine alterations are not simply a secondary manifestation of suicidal behavior, but rather, the pathophysiology of suicide attempts is, at least partly, underpinned by the same biological mechanisms responsible for regulating inflammatory response.


Assuntos
Interleucina-8/genética , Tentativa de Suicídio , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Índice de Massa Corporal , Família , Feminino , Predisposição Genética para Doença , Humanos , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Ideação Suicida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...