Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
J Cereb Blood Flow Metab ; : 271678X241236014, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415649

RESUMO

Antenatal hypoxia-ischaemia (HI) in preterm fetal sheep can trigger delayed evolution of severe, cystic white matter injury (WMI), in a similar timecourse to WMI in preterm infants. We therefore examined how severe hypoxia-ischaemia affects recovery of electroencephalographic (EEG) activity. Chronically instrumented preterm fetal sheep (0.7 gestation) received 25 min of complete umbilical cord occlusion (UCO, n = 9) or sham occlusion (controls, n = 9), and recovered for 21 days. HI was associated with a shift to lower frequency EEG activity for the first 5 days with persisting loss of EEG power in the delta and theta bands, and initial loss of power in the alpha and beta bands in the first 14 days of recovery. In the final 3 days of recovery, there was a marked rhythmic shift towards higher frequency EEG activity after UCO. The UCO group spent less time in high-voltage sleep, and in the early evening (7:02 pm ± 47 min) abruptly stopped cycling between sleep states, with a shift to a high frequency state for 2 h 48 min ± 40 min, with tonic electromyographic activity. These findings demonstrate persisting EEG and sleep state dysmaturation after severe hypoxia-ischaemia. Loss of fetal or neonatal sleep state cycling in the early evening may be a useful biomarker for evolving cystic WMI.

5.
Semin Pediatr Neurol ; 47: 101072, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37919038

RESUMO

UNDERSTANDING FETAL HEART RATE PATTERNS THAT MAY PREDICT ANTENATAL AND INTRAPARTUM NEURAL INJURY: Christopher A. Lear, Jenny A. Westgate, Austin Ugwumadu, Jan G. Nijhuis, Peter R. Stone, Antoniya Georgieva, Tomoaki Ikeda, Guido Wassink , Laura Bennet , Alistair J. Gunn Seminars in Pediatric Neurology Volume 28, December 2018, Pages 3-16 Electronic fetal heart rate (FHR) monitoring is widely used to assess fetal well-being throughout pregnancy and labor. Both antenatal and intrapartum FHR monitoring are associated with a high negative predictive value and a very poor positive predictive value. This in part reflects the physiological resilience of the healthy fetus and the remarkable effectiveness of fetal adaptations to even severe challenges. In this way, the majority of "abnormal" FHR patterns in fact reflect a fetus' appropriate adaptive responses to adverse in utero conditions. Understanding the physiology of these adaptations, how they are reflected in the FHR trace and in what conditions they can fail is therefore critical to appreciating both the potential uses and limitations of electronic FHR monitoring.


Assuntos
Frequência Cardíaca Fetal , Trabalho de Parto , Criança , Gravidez , Feminino , Humanos , Frequência Cardíaca Fetal/fisiologia , Trabalho de Parto/fisiologia , Feto , Frequência Cardíaca
6.
J Cereb Blood Flow Metab ; : 271678X231197380, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824725

RESUMO

Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.

7.
Bioengineering (Basel) ; 10(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37508802

RESUMO

Our objective is to develop a model for the prediction of minimum fetal blood pressure (FBP) during fetal heart rate (FHR) decelerations. Experimental data from umbilical occlusions in near-term fetal sheep (2698 occlusions from 57 near-term lambs) were used to train a convolutional neural network. This model was then used to estimate FBP for decelerations extracted from the final 90 min of 53,445 human FHR signals collected using cardiotocography. Minimum sheep FBP was predicted with a mean absolute error of 6.7 mmHg (25th, 50th, 75th percentiles of 2.3, 5.2, 9.7 mmHg), mean absolute percentage errors of 17.3% (5.5%, 12.5%, 23.9%) and a coefficient of determination R2=0.36. While the model was unable to clearly predict severe compromise at birth in humans, there is positive evidence that such a model could predict human FBP with further development. The neural network is capable of predicting FBP for many of the sheep decelerations accurately but performed far from satisfactory at identifying FHR segments that correspond to the highest or lowest minimum FBP. These results indicate that with further work and a larger, more variable training dataset, the model could achieve higher accuracy.

8.
J Physiol ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432936

RESUMO

Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.

11.
J Physiol ; 601(10): 2017-2041, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017488

RESUMO

Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.


Assuntos
Acidose , Hipotensão , Isquemia Miocárdica , Feminino , Ovinos , Gravidez , Animais , Humanos , Desaceleração , Frequência Cardíaca Fetal/fisiologia , Cordão Umbilical/irrigação sanguínea , Feto , Hipóxia , Hipóxia Fetal
13.
J Physiol ; 601(10): 1999-2016, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999348

RESUMO

Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.


Assuntos
Nascimento Prematuro , Substância Branca , Recém-Nascido , Humanos , Feminino , Ovinos , Animais , Substância Cinzenta , Asfixia/tratamento farmacológico , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/uso terapêutico , Gliose/tratamento farmacológico , Sobrevivência Celular , Eletroencefalografia , Isquemia/tratamento farmacológico , Hipóxia
14.
Exp Neurol ; 363: 114376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889575

RESUMO

Reduced grey matter volume in preterm infants is associated with later disability, but its time course and relationship with white matter injury are not well understood. We recently showed that moderate-severe hypoxia-ischaemia (HI) in preterm fetal sheep led to severe cystic injury 2-3 weeks later. In the same cohort we now show profound hippocampal neuronal loss from 3 days after HI. By contrast, reduction in cortical area and perimeter developed much more slowly, with maximum reduction at day 21. There was transient upregulation of cleaved caspase-3-positive apoptosis in the cortex at day 3 but no change in neuronal density or macroscopic injury of the cortex. Both microglia and astrocytes were transiently upregulated in the grey matter. EEG power was initially profoundly suppressed but partially recovered by 21 days of recovery, and final power was correlated with white matter area (p < 0.001, r2 = 0.75, F = 24.19), cortical area (p = 0.004, r2 = 0.44, F = 11.90) and hippocampi area (p = 0.049, r2 = 0.23, F = 4.58). In conclusion, the present study suggests that in preterm fetal sheep, hippocampal injury is established within a few days of acute HI, but impaired cortical growth develops slowly, in a similar time course to severe white matter injury.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Animais , Ovinos , Substância Cinzenta/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/complicações , Recém-Nascido Prematuro , Hipóxia/complicações , Isquemia/complicações
15.
J Cereb Blood Flow Metab ; 43(6): 947-961, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36703575

RESUMO

Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham-HI (n = 10) or HI induced by complete umbilical cord occlusion for 25 minutes. From 15 minutes to 8 hours after HI, fetuses received either an intravenous infusion of a non-selective alpha-adrenergic antagonist, phentolamine (10 mg bolus, 10 mg/h infusion, n = 10), or saline (n = 10). Fetal brains were processed for histology 72 hours post-HI. Phentolamine infusion was associated with increased epileptiform transient activity and a greater fall in cerebral oxygenation in the early post-HI recovery phase. Histologically, phentolamine was associated with greater loss of oligodendrocytes and hippocampal neurons. In summary, contrary to our hypothesis, alpha-adrenergic inhibition increased epileptiform transient activity with an exaggerated fall in cerebral oxygenation, and increased neural injury, suggesting that alpha-adrenergic receptor activation after HI is an important endogenous neuroprotective mechanism.


Assuntos
Hipóxia Fetal , Hipóxia-Isquemia Encefálica , Feminino , Humanos , Animais , Ovinos , Receptores Adrenérgicos alfa/metabolismo , Fentolamina/farmacologia , Hipóxia/patologia , Isquemia , Hipocampo/metabolismo , Neurônios/metabolismo , Adrenérgicos , Oligodendroglia/patologia , Hipóxia-Isquemia Encefálica/patologia
16.
Am J Obstet Gynecol ; 228(5S): S1117-S1128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801443

RESUMO

Uterine contractions during labor and engagement of the fetus in the birth canal can compress the fetal head. Its impact on the fetus is unclear and still controversial. In this integrative physiological review, we highlight evidence that decelerations are uncommonly associated with fetal head compression. Next, the fetus has an impressive ability to adapt to increased intracranial pressure through activation of the intracranial baroreflex, such that fetal cerebral perfusion is well-maintained during labor, except in the setting of prolonged systemic hypoxemia leading to secondary cardiovascular compromise. Thus, when it occurs, fetal head compression is not necessarily benign but does not seem to be a common contributor to intrapartum decelerations. Finally, the intracranial baroreflex and the peripheral chemoreflex (the response to acute hypoxemia) have overlapping efferent effects. We propose the hypothesis that these reflexes may work synergistically to promote fetal adaptation to labor.


Assuntos
Desaceleração , Trabalho de Parto , Gravidez , Feminino , Humanos , Parto , Trabalho de Parto/fisiologia , Hipóxia , Feto/fisiologia , Frequência Cardíaca Fetal/fisiologia , Cardiotocografia
17.
Brain ; 146(4): 1453-1466, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36087304

RESUMO

Cystic white matter injury is highly associated with severe neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis remains poorly understood and there is no established treatment. In the present study, we tested the hypothesis that slowly evolving cystic white matter injury after hypoxia-ischaemia is mediated by programmed necrosis initiated by tumour necrosis factor. Tumour necrosis factor blockade was begun 3 days after hypoxia-ischaemia to target the tertiary phase of injury, when most secondary cell death is thought to be complete. Chronically instrumented preterm foetal sheep (0.7 gestation) received 25 min of hypoxia-ischaemia induced by complete umbilical cord occlusion or sham-umbilical cord occlusion (controls, n = 10), followed by intracerebroventricular infusion of the soluble TNF inhibitor, Etanercept, at 3, 8 and 13 days after umbilical cord occlusion (n = 9) or vehicle (n = 9). Foetal brains were processed for histology at 21 days after umbilical cord occlusion. Umbilical cord occlusion with vehicle was associated with a spectrum of macroscopic white matter degeneration, including white matter atrophy, ventriculomegaly and overt temporal lobe cystic white matter injury. Oligodendrocyte maturational arrest and impaired labelling of myelin proteins, characteristic of diffuse white matter injury, was observed in the parietal lobe and surrounding the cystic lesions in the temporal lobe. Etanercept markedly attenuated cystic white matter injury on the side of the intracerebroventricular infusion, with partial contralateral protection. Further, Etanercept improved oligodendrocyte maturation and labelling of myelin proteins in the temporal and parietal lobes. The present study shows that cystic white matter injury reflects late-onset tertiary cell death mediated by delayed neuroinflammation through the tumour necrosis factor pathway. Delayed tumour necrosis factor blockade markedly attenuated cystic white matter injury and restored oligodendrocyte maturation and deficits in myelin protein expression. These data suggest that delayed tumour necrosis factor blockade may represent a viable therapeutic strategy to reduce the risk of cystic and diffuse white matter injury and potentially cerebral palsy after preterm birth, with a surprisingly wide therapeutic window.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Nascimento Prematuro , Substância Branca , Recém-Nascido , Humanos , Feminino , Ovinos , Animais , Substância Branca/patologia , Asfixia/complicações , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Etanercepte/metabolismo , Recém-Nascido Prematuro , Hipóxia-Isquemia Encefálica/patologia , Lesões Encefálicas/patologia , Fatores de Necrose Tumoral/metabolismo
18.
Front Pediatr ; 10: 925951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903161

RESUMO

Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment. Post-HI recovery is associated with a typical neurophysiological profile, with stereotypic changes in cerebral perfusion and oxygenation. After the initial recovery, there is a delayed, prolonged reduction in cerebral perfusion related to metabolic suppression, followed by secondary deterioration with hyperperfusion and increased cerebral oxygenation, associated with altered neurovascular coupling and impaired cerebral autoregulation. These changes in cerebral perfusion are associated with the stages of evolution of injury and injury severity. Further, iatrogenic factors can also affect cerebral oxygenation during the early period of deranged metabolism, and improving clinical management may improve neuroprotection. We will review recent evidence that changes in cerebral oxygenation and metabolism after HI may be useful biomarkers of prognosis.

19.
BJOG ; 129(12): 2070-2081, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35596699

RESUMO

Increased fetal heart rate variability (FHRV) in intrapartum cardiotocographic recording has been variably defined and poorly understood, limiting its clinical utility. Both preclinical (animal) and clinical (human) evidence support that increased FHRV is observed in the early stage of intrapartum fetal hypoxaemia but can also be observed in a subset of fetuses during the preterminal stage of repeated hypoxaemia. This review of available evidence provides data and expert opinion on the pathophysiology of increased FHRV, its clinical significance and a stepwise approach regarding the management of this pattern, and propose recommendations for standardisation of related terminology.


Assuntos
Frequência Cardíaca Fetal , Trabalho de Parto , Animais , Cardiotocografia , Feminino , Frequência Cardíaca Fetal/fisiologia , Humanos , Hipóxia , Parto , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...