Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(84): eade5343, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390222

RESUMO

Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Humanos , Ligantes , Timo , Receptores de Antígenos de Linfócitos T alfa-beta , Imunoglobulinas , Receptores KIR
2.
PLoS Comput Biol ; 18(2): e1009059, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192601

RESUMO

Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.


Assuntos
Receptores KIR3DL1 , Receptores KIR3DS1 , Alelos , Genótipo , Antígenos HLA-B/genética , Humanos , Receptores KIR/genética , Receptores KIR3DL1/genética , Receptores KIR3DS1/genética
3.
Immunology ; 162(4): 389-404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33283280

RESUMO

Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.


Assuntos
Povo Asiático , Genótipo , Antígenos HLA-C/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico , Pré-Eclâmpsia/genética , Receptores KIR2DL1/genética , Alelos , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Incidência , Malásia/epidemiologia , Malásia/etnologia , Masculino , Pré-Eclâmpsia/epidemiologia , Gravidez
4.
PLoS Pathog ; 16(9): e1008952, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960936

RESUMO

Understanding how the protozoan protein degradation pathway is regulated could uncover new parasite biology for drug discovery. We found the COP9 signalosome (CSN) conserved in multiple pathogens such as Leishmania, Trypanosoma, Toxoplasma, and used the severe diarrhea-causing Entamoeba histolytica to study its function in medically significant protozoa. We show that CSN is an essential upstream regulator of parasite protein degradation. Genetic disruption of E. histolytica CSN by two distinct approaches inhibited cell proliferation and viability. Both CSN5 knockdown and dominant negative mutation trapped cullin in a neddylated state, disrupting UPS activity and protein degradation. In addition, zinc ditiocarb (ZnDTC), a main metabolite of the inexpensive FDA-approved globally-available drug disulfiram, was active against parasites acting in a COP9-dependent manner. ZnDTC, given as disulfiram-zinc, had oral efficacy in clearing parasites in vivo. Our findings provide insights into the regulation of parasite protein degradation, and supports the significant therapeutic potential of COP9 inhibition.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Entamoeba histolytica/metabolismo , Proteólise , Animais , Complexo do Signalossomo COP9/genética , Dissulfiram/farmacologia , Ditiocarb/farmacologia , Entamoeba histolytica/genética , Camundongos , Proteínas de Protozoários/genética
5.
Sci Rep ; 8(1): 10241, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980718

RESUMO

Multiple protozoans produce homologs of the cytokine MIF which play a role in immune evasion, invasion and pathogenesis. However, how parasite-encoded MIF activity is controlled remains poorly understood. Cytokine activity can be inhibited by intracellular binding partners that are released in the extracellular space during cell death. We investigated the presence of an endogenous parasite protein that was capable of interacting and interfering with MIF activity. A screen for protein-protein interaction was performed using immunoaffinity purification of amebic cell lysate with specific anti-Entamoeba histolytica MIF (EhMIF) antibody followed by mass spectrometry analysis, which revealed an E. histolytica-produced JAB1 protein (EhJAB1) as a potential binding partner. JAB1 was found to be highly conserved in protozoans. Direct interaction between the EhMIF and EhJAB1 was confirmed by several independent approaches with GST pull-down, co-immunoprecipitation, and Biolayer interferometry (BLI) assays. Furthermore, the C-terminal region outside the functional JAMM deneddylase motif was required for EhMIF binding, which was consistent with the top in silico predictions. In addition, EhJAB1 binding blocked EhMIF-induced IL-8 production by human epithelial cells. We report the initial characterization of a parasite-encoded JAB1 and uncover a new binding partner for a protozoan-produced MIF protein, acting as a possible negative regulator of EhMIF.


Assuntos
Anticorpos/imunologia , Entamoeba histolytica/fisiologia , Entamebíase/metabolismo , Inflamação/prevenção & controle , Fatores Inibidores da Migração de Macrófagos/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Citocinas/metabolismo , Entamebíase/imunologia , Entamebíase/parasitologia , Células HCT116 , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/parasitologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...