Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622867

RESUMO

A sensing platform based on nanocomposite materials composed of gold metal nanoparticles (AuNPs) and conducting polymer (CP) matrix has been developed for serotonin and epinephrine detection. The CP-AuNPs nanocomposite materials have been synthesized onto glassy carbon electrodes (GCE) by using novel electrochemical procedures based on sinusoidal currents (SC). The SC procedures ensured good control of the metal nanoparticles distribution, increased electrochemical surface area, and enhanced analytical performance. The proposed sensing platform displayed good analytical performance toward serotonin and epinephrine detection. A wide linear analytical response toward epinephrine in the range from 10 to 640 µM and a low detection limit of 1.4 µM epinephrine has been obtained. The sensing platform has also displayed a linear response toward serotonin in the range from 10 to 320 µM, with a detection limit of 5.7 µM serotonin. The sensing platform has been successfully applied in the analysis of epinephrine and serotonin in real samples of tap water and urine with good accuracy.


Assuntos
Líquidos Corporais , Nanopartículas Metálicas , Ouro , Serotonina , Epinefrina , Polímeros
2.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365951

RESUMO

The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method. The XRD pattern of the CuONPs reveals the formation of the monoclinic tenorite phase, CuO, with average crystallite sizes of 8.7 nm, while the estimated band gap from UV-vis spectroscopy is of 1.2 eV. The SEM, STEM, and BET analyses show the formation of quasi-prismatic microaggregates of nanoparticles, with dimensions ranging from 1 µm up to ca. 200 µm, with a mesoporous structure. The developed electrochemical sensor exhibited a linear response toward H2O2 in the concentration range from 0.04 to 10 mM, with a low detection limit of 8.5 µM of H2O2. Furthermore, the obtained sensor possessed an excellent anti-interference capability in H2O2 determination in the presence of interfering compounds such as KNO3 and KNO2.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Peróxido de Hidrogênio/química , Óxidos/química , Eletrodos , Nanopartículas/química , Carbono/química , Técnicas Eletroquímicas/métodos
3.
Materials (Basel) ; 14(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804421

RESUMO

Microbial infections associated with skin diseases are frequently investigated since they impact on the progress of pathology and healing. The present work proposes the development of freeze-dried, glutaraldehyde cross-linked, and non-cross-linked biocomposite dressings with a porous structure, which may assist the reepithelization process through the presence of collagen and carboxymethylcellulose, along with a therapeutic antimicrobial effect, due to silver nanoparticles (AgNPs) addition. Phisyco-chemical characterization revealed the porous morphology of the obtained freeze-dried composites, the presence of high crystalline silver nanoparticles with truncated triangular and polyhedral morphologies, as well as the characteristic absorption bands of collagen, silver, and carboxymethylcellulose. In vitro tests also assessed the stability, functionality, and the degradability rate of the obtained wound-dressings. Antimicrobial assay performed on Gram-negative (Escherichia coli), Gram-positive (Staphyloccocus aureus) bacteria, and yeast (Candida albicans) models demonstrated that composite wound dressings based on collagen, carboxymethylcellulose, and AgNPs are suitable for skin lesions because they prevent the risk of infection and have prospective wound healing capacity. Moreover, the cell toxicity studies proved that the obtained materials can be used in long time treatments, with no cytotoxic effects.

4.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009659

RESUMO

In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.


Assuntos
Melatonina , Nanopartículas Metálicas , Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...