Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102823

RESUMO

BACKGROUND: Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation. METHODS: This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis. Findings are validated by immunohistochemistry, flow cytometry and cell-lineage tracing in vivo, and in vitro assays with muscularis macrophages (MMφ). RESULTS: In naïve conditions, transcriptional duality is observed in MMφs with 2 major subpopulations: conventional resident Cx3cr1+ MMφs and Lyve1+ MMφs. The Lyve1+ population is phagocytic and expresses several known MMφ markers in mouse and human, confirming their identity as a bona fide MMφ subset. Single-cell transcriptomics indicate that resident MMφs are retained during colitis and exhibit plasticity toward an inflammatory profile. Lyve1+ MMφs, which express anti-inflammatory marker CD163, are absent during colitis, as confirmed by flow cytometry. In contrast, lineage tracing finds that resident Cx3cr1+ MMφs remain during colitis and are not completely replaced by the inflammatory infiltrating monocytes. In vitro studies provide biological evidence of the plasticity of resident Cx3cr1+ MMφs in response to lipopolysaccharide (LPS), mirroring transcriptional observations in vivo of their inflammatory plasticity. Potential markers for colitic MMφs, validated in animal models and in individuals with ulcerative colitis, are identified. CONCLUSIONS: Our findings contribute to the understanding of the immune system in the muscularis propria niche during colitis by resolving the heterogeneity and origins of colitic MMφs.


Involvement of the muscularis propria accompanies a poorer prognosis in IBD. This study characterizes muscularis macrophage subpopulations during colitis, highlighting the loss of anti-inflammatory LYVE-1+ macrophages and inflammatory plasticity in resident CX3CR1+ macrophages, providing insights into prognostic and therapeutic targets.

2.
JCI Insight ; 9(17)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042470

RESUMO

The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia." Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared with that of sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.


Assuntos
Modelos Animais de Doenças , Sistema Nervoso Entérico , Motilidade Gastrointestinal , Doença de Hirschsprung , Camundongos Knockout , Células-Tronco Neurais , Animais , Doença de Hirschsprung/terapia , Doença de Hirschsprung/patologia , Células-Tronco Neurais/transplante , Motilidade Gastrointestinal/fisiologia , Camundongos , Sistema Nervoso Entérico/fisiopatologia , Colo/patologia , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Transplante de Células-Tronco/métodos , Movimento Celular , Feminino , Humanos , Masculino , Músculo Liso
3.
Neuron ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39019043

RESUMO

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

4.
Nat Commun ; 15(1): 2479, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509106

RESUMO

Neurointestinal diseases cause significant morbidity and effective treatments are lacking. This study aimes to test the feasibility of transplanting autologous enteric neural stem cells (ENSCs) to rescue the enteric nervous system (ENS) in a model of colonic aganglionosis. ENSCs are isolated from a segment of small intestine from Wnt1::Cre;R26iDTR mice in which focal colonic aganglionosis is simultaneously created by diphtheria toxin injection. Autologous ENSCs are isolated, expanded, labeled with lentiviral-GFP, and transplanted into the aganglionic segment in vivo. ENSCs differentiate into neurons and glia, cluster to form neo-ganglia, and restore colonic contractile activity as shown by electrical field stimulation and optogenetics. Using a non-lethal model of colonic aganglionosis, our results demonstrate the potential of autologous ENSC therapy to improve functional outcomes in neurointestinal disease, laying the groundwork for clinical application of this regenerative cell-based approach.


Assuntos
Neoplasias Colorretais , Sistema Nervoso Entérico , Doença de Hirschsprung , Células-Tronco Neurais , Camundongos , Animais , Doença de Hirschsprung/terapia , Transplante de Células-Tronco/métodos , Células-Tronco Neurais/transplante , Neurônios
5.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095019

RESUMO

Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for a significant share of childhood cancer deaths. Prior studies utilizing RNA sequencing of bulk tumor populations showed two predominant cell states characterized by high and low expression of neuronal genes. Although cells respond to treatment by altering their gene expression, it is unclear whether this reflects shifting balances of distinct subpopulations or plasticity of individual cells. Using mouse and human neuroblastoma cell lines lacking MYCN amplification, we show that the antigen CD49b (also known as ITGA2) distinguishes these subpopulations. CD49b expression marked proliferative cells with an immature gene expression program, whereas CD49b-negative cells expressed differentiated neuronal marker genes and were non-cycling. Sorted populations spontaneously switched between CD49b expression states in culture, and CD49b-negative cells could generate rapidly growing, CD49b-positive tumors in mice. Although treatment with the chemotherapy drug doxorubicin selectively killed CD49b-positive cells in culture, the CD49b-positive population recovered when treatment was withdrawn. We profiled histone 3 (H3) lysine 27 acetylation (H3K27ac) to identify enhancers and super enhancers that were specifically active in each population and found that CD49b-negative cells maintained the priming H3 lysine 4 methylation (H3K4me1) mark at elements that were active in cells with high expression of CD49b. Improper maintenance of primed enhancer elements might thus underlie cellular plasticity in neuroblastoma, representing potential therapeutic targets for this lethal tumor.


Assuntos
Histonas , Neuroblastoma , Humanos , Animais , Camundongos , Histonas/metabolismo , Lisina/metabolismo , Integrina alfa2/metabolismo , Diferenciação Celular/genética , Neuroblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA