Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2111312119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639697

RESUMO

Constraining the climate crisis requires urgent action to reduce anthropogenic emissions while simultaneously removing carbon dioxide from the atmosphere. Improved information about the maximum magnitude and spatial distribution of opportunities for additional land-based removals of CO2 is needed to guide on-the-ground decision-making about where to implement climate change mitigation strategies. Here, we present a globally consistent spatial dataset (approximately 500-m resolution) of current, potential, and unrealized potential carbon storage in woody plant biomass and soil organic matter. We also provide a framework for prioritizing actions related to the restoration, management, and maintenance of woody carbon stocks and associated soils. By comparing current to potential carbon storage, while excluding areas critical to food production and human habitation, we find 287 petagrams (PgC) of unrealized potential storage opportunity, of which 78% (224 PgC) is in biomass and 22% (63 PgC) is in soil. Improved management of existing forests may offer nearly three-fourths (206 PgC) of the total unrealized potential, with the majority (71%) concentrated in tropical ecosystems. However, climate change is a source of considerable uncertainty. While additional research is needed to understand the impact of natural disturbances and biophysical feedbacks, we project that the potential for additional carbon storage in woody biomass will increase (+17%) by 2050 despite projected decreases (−12%) in the tropics. Our results establish an absolute reference point and conceptual framework for national and jurisdictional prioritization of locations and actions to increase land-based carbon storage.


Assuntos
Carbono , Ecossistema , Sequestro de Carbono , Clima , Solo
2.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088658

RESUMO

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

3.
Nature ; 585(7826): 545-550, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32968258

RESUMO

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Conservação dos Recursos Naturais , Coleta de Dados , Recuperação e Remediação Ambiental , Aquecimento Global/prevenção & controle , Internacionalidade , Cinética
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190126, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983330

RESUMO

Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr-1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Política Ambiental/legislação & jurisprudência , Aquecimento Global/prevenção & controle , Aquecimento Global/legislação & jurisprudência , Regulamentação Governamental
5.
Glob Chang Biol ; 25(11): 3609-3624, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310673

RESUMO

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.


Assuntos
Árvores , Clima Tropical , África , Ásia , Biomassa , Carbono , Florestas , América do Sul
6.
Sci Adv ; 4(11): eaat1869, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30443593

RESUMO

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

7.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078344

RESUMO

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...