Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 14(6): 1508-1519, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32152390

RESUMO

The majority of anaerobic biogeochemical cycling occurs within marine sediments. To understand these processes, quantifying the distribution of active cells and gross metabolic activity is essential. We present an isotope model rooted in thermodynamics to draw quantitative links between cell-specific sulfate reduction rates and active sedimentary cell abundances. This model is calibrated using data from a series of continuous culture experiments with two strains of sulfate reducing bacteria (freshwater bacterium Desulfovibrio vulgaris strain Hildenborough, and marine bacterium Desulfovibrio alaskensis strain G-20) grown on lactate across a range of metabolic rates and ambient sulfate concentrations. We use a combination of experimental sulfate oxygen isotope data and nonlinear regression fitting tools to solve for unknown kinetic, step-specific oxygen isotope effects. This approach enables identification of key isotopic reactions within the metabolic pathway, and defines a new, calibrated framework for understanding oxygen isotope variability in sulfate. This approach is then combined with porewater sulfate/sulfide concentration data and diagenetic modeling to reproduce measured 18O/16O in porewater sulfate. From here, we infer cell-specific sulfate reduction rates and predict abundance of active cells of sulfate reducing bacteria, the result of which is consistent with direct biological measurements.


Assuntos
Desulfovibrio/metabolismo , Isótopos de Oxigênio , Sulfatos/metabolismo , Bactérias/metabolismo , Oxirredução , Sulfetos/metabolismo , Óxidos de Enxofre/metabolismo
2.
Geobiology ; 14(1): 91-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26189479

RESUMO

Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations preserved in Archean rocks have been interpreted as suggesting Archean sulfate concentrations of <200 µm, while larger fractionations thereafter have been interpreted to require higher concentrations. In this work, we demonstrate that fractionation imposed by sulfate reduction can be a function of concentration over a millimolar range, but that nature of this relationship depends on the organism studied. Two sulfate-reducing bacteria grown in continuous culture with sulfate concentrations ranging from 0.1 to 6 mm showed markedly different relationships between sulfate concentration and isotope fractionation. Desulfovibrio vulgaris str. Hildenborough showed a large and relatively constant isotope fractionation ((34) εSO 4-H2S ≅ 25‰), while fractionation by Desulfovibrio alaskensis G20 strongly correlated with sulfate concentration over the same range. Both data sets can be modeled as Michaelis-Menten (MM)-type relationships but with very different MM constants, suggesting that the fractionations imposed by these organisms are highly dependent on strain-specific factors. These data reveal complexity in the sulfate concentration-fractionation relationship. Fractionation during MSR relates to sulfate concentration but also to strain-specific physiological parameters such as the affinity for sulfate and electron donors. Previous studies have suggested that the sulfate concentration-fractionation relationship is best described with a MM fit. We present a simple model in which the MM fit with sulfate concentration and hyperbolic fit with growth rate emerge from simple physiological assumptions. As both environmental and biological factors influence the fractionation recorded in geological samples, understanding their relationship is critical to interpreting the sulfur isotope record. As the uptake machinery for both sulfate and electrons has been subject to selective pressure over Earth history, its evolution may complicate efforts to uniquely reconstruct ambient sulfate concentrations from a single sulfur isotopic composition.


Assuntos
Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Microbiologia Ambiental , Sulfatos/metabolismo , Isótopos de Enxofre/análise , Oxirredução
3.
Microb Ecol ; 67(2): 318-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24194097

RESUMO

The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate electron transfer to metals and may contribute to the formation and speciation of ferrous sulfides formed at the cell-mineral interface. In the present study, we compared the whole cell hydrogenase activity of Desulfovibrio desulfuricans strain Essex 6 growing as biofilms on hematite (hematite-associated) or as suspended populations using different metabolic pathways. Hematite-associated cells exhibited significantly greater hydrogenase activity than suspended populations during sulfate respiration but not during pyruvate fermentation. The enhanced activity of the hematite-associated, sulfate-grown cells appears to be dependent on iron availability rather than a general response to surface attachment since the activity of glass-associated cells did not differ from that of suspended populations. Hydrogenase activity of pyruvate-fermenting cells was stimulated by addition of iron as soluble Fe(II)Cl2 and, in the absence of added iron, both sulfate-reducing and pyruvate-fermenting cells displayed similar rates of hydrogenase activity. These data suggest that iron exerts a stronger influence on whole cell hydrogenase activity than either metabolic pathway or mode of growth. The location of hydrogenase to the cell envelope and the enhanced activity at the hematite surface in sulfate-reducing cells may influence the redox conditions that control the species of iron sulfides on the mineral surface.


Assuntos
Desulfovibrio desulfuricans/enzimologia , Compostos Férricos/química , Hidrogenase/metabolismo , Biofilmes , DNA Bacteriano/genética , Desulfovibrio desulfuricans/isolamento & purificação , Hidrogênio/química , Hidrogenase/genética , Ferro/química , Minerais/química , Oxirredução , Análise de Sequência de DNA , Sulfatos/química
4.
Geobiology ; 9(5): 446-57, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884365

RESUMO

Sulfur isotopes in the geological record integrate a combination of biological and diagenetic influences, but a key control on the ratio of sulfur isotopes in sedimentary materials is the magnitude of isotope fractionation imparted during dissimilatory sulfate reduction. This fractionation is controlled by the flux of sulfur through the network of chemical reactions involved in sulfate reduction and by the isotope effect associated with each of these chemical reactions. Despite its importance, the network of reactions constituting sulfate reduction is not fully understood, with two principle networks underpinning most isotope models. In this study, we build on biochemical data and recently solved crystal structures of enzymes to propose a revised network topology for the flow of sulfur through the sulfate reduction metabolism. This network is highly branched and under certain conditions produces results consistent with the observations that motivated previous sulfate reduction models. Our revised network suggests that there are two main paths to sulfide production: one that involves the production of thionate intermediates, and one that does not. We suggest that a key factor in determining sulfur isotope fractionation associated with sulfate reduction is the ratio of the rate at which electrons are supplied to subunits of Dsr vs. the rate of sulfite delivery to the active site of Dsr. This reaction network may help geochemists to better understand the relationship between the physiology of sulfate reduction and the isotopic record it produces.


Assuntos
Sulfetos/metabolismo , Sulfitos/metabolismo , Ácidos de Enxofre/metabolismo , Isótopos de Enxofre/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Fracionamento Químico , Oxirredução , Enxofre/química , Isótopos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...