Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135541

RESUMO

The whitefly Bemisia tabaci is one of the most important agricultural pests due to its extreme invasiveness, insecticide resistance, and ability to transmit hundreds of plant viruses. Among these, Begomoviruses and recombinant whitefly-borne Poleroviruses are transmitted persistently. Several studies have shown that upon infection, plant viruses manipulate plant-emitted volatile organic compounds (VOCs), which have important roles in communication with insects. In this study, we profiled and compared the VOCs emitted by tomato and pepper plant leaves after infection with the Tomato yellow leaf curl virus (TYLCV) (Bogomoviruses) and the newly discovered Pepper whitefly-borne vein yellows virus (PeWBVYV) (Poleroviruses), respectively. The results identified shared emitted VOCs but also uncovered unique VOC signatures for each virus and for whitefly infestation (i.e., without virus infection) independently. The results suggest that plants have general defense responses; however, they are also able to respond individually to infection with specific viruses or infestation with an insect pest. The results are important to enhance our understanding of virus- and insect vector-induced alteration in the emission of plant VOCs. These volatiles can eventually be used for the management of virus diseases/insect vectors by either monitoring or disrupting insect-plant interactions.

2.
Insects ; 12(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451167

RESUMO

The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip's damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.

3.
Pest Manag Sci ; 77(5): 2557-2567, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33486866

RESUMO

BACKGROUND: Intensive application of chemical insecticides is required for aphid pest control. Among the biorational alternatives, entomopathogenic fungi are the most sustainable biocontrol agents; those of the order Hypocreales attack and cause fungal disease in arthropod hosts, with variations in host susceptibility attributed to both fungal and host characteristics. We evaluated inter- and intraspecies variations in Metarhizium spp. virulence and differences in fungal disease progression on adult and nymph stages of the green peach aphid, Myzus persicae (Sulzer), a parthenogenetically reproducing insect species. RESULTS: Minor interspecies diversity was detected between the generalist Metarhizium species examined. Interestingly, significant intraspecies diversity was observed between Metarhizium brunneum isolates Mb7 and MbK. Infected adult aphids demonstrated similar disease progression for both isolates, mortality rates of more than 80% and fivefold reduction in fecundity. However, nymph mortality was detected only following MbK infection, with 50% mortality and significant reduction in molting rates. Confocal laser scanning microscopy demonstrated the variation in the disease stages of conidial adhesion and hemocoel colonization on each examined day post inoculation for each isolate. Significantly faster disease progression was observed in MbK-infected versus Mb7-infected nymphs, the latter demonstrating a higher percentage of uninfected nymphs accompanied with aphid molting. CONCLUSIONS: The observed intraspecies variation suggests that altered conidial adhesion to the nymph cuticle is a major factor affecting virulence. We prove the role of nymph ecdysis as a defense mechanism disrupting fungal infection. Because significant differences were observed between closely related isolates, this study emphasizes the importance of appropriate isolate selection for biological control. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Metarhizium , Prunus persica , Animais , Progressão da Doença , Controle Biológico de Vetores
4.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188004

RESUMO

Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. "Candidatus Liberibacter solanacearum," which is associated with important vegetable diseases, is transmitted by the carrot psyllid Bactericera trigonica in a persistent manner. Here, we elucidated the role of the B. trigonica Arp2/3 protein complex, which plays a major role in regulation of the actin cytoskeleton, in the transmission of "Ca Liberibacter solanacearum." "Ca Liberibacter solanacearum" colocalized with ArpC2, a key protein in this complex, and this colocalization was strongly associated with actin filaments. Silencing of the psyllid ArpC2 disrupted the colocalization and the dynamics of F-actin. Silencing of RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, showed similar results. On the other hand, silencing of ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused a 73.4% reduction in "Ca Liberibacter solanacearum" transmission by psyllids, strongly suggesting that transmission of "Ca Liberibacter solanacearum" by B. trigonica is cytoskeleton dependent and "Ca Liberibacter solanacearum" interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to the development of a novel strategy for the management of Liberibacter-associated diseases.IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil. Here, we show that psyllid-transmitted "Candidatus Liberibacter solanacearum" employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing of ArpC2 dramatically influenced the interaction of "Ca Liberibacter solanacearum" with the cytoskeleton and decreased the bacterial transmission to plants. This system could be targeted to develop a novel approach for the control of Liberibacter-associated diseases.


Assuntos
Citoesqueleto de Actina , Daucus carota/microbiologia , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Liberibacter , Doenças das Plantas/microbiologia , Animais , Proteínas de Insetos/genética
5.
Gigascience ; 9(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185242

RESUMO

BACKGROUND: Many plant viruses are vector-borne and depend on arthropods for transmission between host plants. Begomoviruses, the largest, most damaging and emerging group of plant viruses, infect hundreds of plant species, and new virus species of the group are discovered each year. Begomoviruses are transmitted by members of the whitefly Bemisia tabaci species complex in a persistent-circulative manner. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops, as well as in many agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; however, the causes for these variations are attributed among others to genetic differences among vector populations, as well as to differences in the bacterial symbionts housed within B. tabaci. RESULTS: Here, we performed discovery proteomic analyses in 9 whitefly populations from both Middle East Asia Minor I (MEAM1, formerly known as B biotype) and Mediterranean (MED, formerly known as Q biotype) species. We analysed our proteomic results on the basis of the different TYLCV transmission abilities of the various populations included in the study. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. CONCLUSIONS: Our data demonstrate that the proteomic signatures of better vector populations differ considerably when compared with less efficient vector populations in the 2 whitefly species tested in this study. While MEAM1 efficient vector populations have a more lenient immune system, the Q efficient vector populations have higher abundance of proteins possibly implicated in virus passage through cells. Both species show a strong link of the facultative symbiont Rickettsia to virus transmission.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Bactérias , Doenças das Plantas , Proteômica
6.
Insects ; 11(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114086

RESUMO

Control of the crop pest African cotton leafworm, Spodoptera littoralis (Boisduval), by chemical insecticides has led to serious resistance problems. Ajuga plants contain phytoecdysteroids (arthropod steroid hormone analogs regulating metamorphosis) and clerodanes (diterpenoids exhibiting antifeedant activity). We analyzed these compounds in leaf extracts of the Israeli Ajuga iva L. by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and thin-layer chromatography (TLC), and their efficiency at reducing S.littoralis fitness. First and third instars of S. littoralis were fed castor bean leaves (Ricinus communis) smeared with an aqueous suspension of dried methanolic crude extract of A. iva phytoecdysteroids and clerodanes. Mortality, larval weight gain, relative growth rate and survival were compared to feeding on control leaves. We used '4',6-diamidino-2-phenylindole (DAPI, a fluorescent stain) and phalloidin staining to localize A. iva crude leaf extract activity in the insect gut. Ajuga iva crude leaf extract (50, 100 and 250 µg/µL) significantly increased mortality of first-instar S. littoralis (36%, 70%, and 87%, respectively) compared to controls (6%). Third-instar larval weight gain decreased significantly (by 52%, 44% and 30%, respectively), as did relative growth rate (-0.05 g/g per day compared to the relevant controls), ultimately resulting in few survivors. Crude leaf extract (250 µg/µL) reduced gut size, with relocation of nuclei and abnormal actin-filament organization. Ajug iva extract has potential for alternative, environmentally safe insect-pest control.

7.
Microorganisms ; 8(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397333

RESUMO

Endosymbionts harbored inside insects play critical roles in the biology of their insect host and can influence the transmission of pathogens by insect vectors. Bactericera trigonica infests umbelliferous plants and transmits the bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), causing carrot yellows disease. To characterize the bacterial diversity of B. trigonica, as a first step, we used PCR-restriction fragment length polymorphism (PCR-RFLP) and denaturing gradient gel electrophoresis (DGGE) analyses of 16S rDNA to identify Sodalis and Spiroplasma endosymbionts. The prevalence of both symbionts in field-collected psyllid populations was determined: Sodalis was detected in 100% of field populations, while Spiroplasma was present in 82.5% of individuals. Phylogenetic analysis using 16S rDNA revealed that Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species. Using fluorescent in situ hybridization and immunostaining, Sodalis was found to be localized inside the nuclei of the midgut cells and bacteriocytes. Spiroplasma was restricted to the cytoplasm of the midgut cells. We further show that a recently reported Bactericera trigonica densovirus (BtDNV), a densovirus infecting B. trigonica was detected in 100% of psyllids and has reduced titers inside CLso-infected psyllids by more than two-fold compared to CLso uninfected psyllids. The findings of this study will help to increase our understanding of psyllid-endosymbiont interactions.

8.
J Econ Entomol ; 113(2): 1023-1027, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31819974

RESUMO

The false codling moth Thaumatotibia leucotreta (Meyrick), is an invasive species in Israel. In order to carry out a classical biological control program, the African egg parasitoid Trichogrammatoidea cryptophlebiae (Nagaraja) was recently introduced into Israel, and nontarget host risk assessment was performed as required. In no-choice tests we determined that T. cryptophlebiae was unable to develop in eggs of four nontarget Lepidopteran species: Pectinophora gossypiella (Saunders), Spodoptora littoralis (Boisduval), Ephestia kuehniella (Zeller), and Belenois aurota (Fabricius). Conversely, it developed in three Lepidopteran species eggs of the Tortricidae family: Cydia pomonella (Linnaeus), Lobesia botrana (Denis and Schiffermüller), and Epiblema strenuana (Walker). Epiblema strenuana eggs showed the lowest parasitism level among all tested moth eggs of the Tortricidae family. The progeny production of parasitized false codling moth eggs was similar to that of C. pomonella eggs, but smaller than that of L. botrana eggs. However, moth egg and parasitoid clutch sizes were smallest on L. botrana eggs and largest on C. pomonella eggs. In choice bioassays, T. cryptophlebiae significantly preferred to parasitize T. leucotreta eggs over the eggs of C. pomonella, L. botrana, and E. strenuana. Moreover, the choice of T. leucotreta eggs over the eggs of L. botrana was not affected by the parasitoids' rearing histories. Our data support the assumption that T. cryptophlebiae develops only in moth species of the Tortricidae family. Thus, the risk that it may attack nontarget species is low.


Assuntos
Himenópteros , Mariposas , Animais , Israel , Medição de Risco
9.
Insects ; 10(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480697

RESUMO

Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria-host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.

10.
Front Physiol ; 10: 557, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133883

RESUMO

The whitefly B. tabaci is a global pest and transmits extremely important plant viruses especially begomoviruses, that cause substantial crop losses. B. tabaci is one of the top invasive species worldwide and have developed resistance to all major pesticide classes. One of the promising alternative ways for controlling this pest is studying its genetic makeup for identifying specific target proteins which are critical for its development and ability to transmit viruses. Tomato yellow leaf curl virus (TYLCV) is the most economically important and well-studied begomovirus transmitted by B. tabaci, in a persistent-circulative manner. Recently, we reported that B. tabaci Cyclophilin B (CypB) and heat shock protein 70 proteins (hsp70) interact and co-localize with TYLCV in the whitefly midgut, on the virus transmission pathway, and that both proteins have a significant role in virus transmission. Here, we extended the previous work and used the Tobacco rattle virus (TRV) plant-mediated RNA silencing system for knocking down both genes and testing the effect of their silencing on whitefly viability and virus transmission. Portions of these two genes were cloned into TRV constructs and tomato plants were infected and used for whitefly feeding and transmission experiments. Following whitefly feeding on TRV-plants, the expression levels of cypB and hsp70 in adult B. tabaci significantly decreased over 72 h feeding period. The knockdown in the expression of both genes was further shown in the first generation of silenced whiteflies, where phenotypic abnormalities in the adult, wing, nymph and bacteriosomes development and structure were observed. Additionally, high mortality rates that reached more than 80% among nymphs and adults were obtained. Finally, silenced whitefly adults with both genes showed decreased ability to transmit TYLCV under lab conditions. Our results suggest that plant-mediated silencing of both cypB and hsp70 have profound effects on whitefly development and its ability to transmit TYLCV.

11.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092571

RESUMO

Many animal and plant viruses depend on arthropods for their transmission. Virus-vector interactions are highly specific, and only one vector or one of a group of vectors from the same family is able to transmit a given virus. Poleroviruses (Luteoviridae) are phloem-restricted RNA plant viruses that are exclusively transmitted by aphids. Multiple aphid-transmitted polerovirus species commonly infect pepper, causing vein yellowing, leaf rolling, and fruit discoloration. Despite low aphid populations, a recent outbreak with such severe symptoms in many bell pepper farms in Israel led to reinvestigation of the disease and its insect vector. Here we report that this outbreak was caused by a new whitefly (Bemisia tabaci)-transmitted polerovirus, which we named Pepper whitefly-borne vein yellows virus (PeWBVYV). PeWBVYV is highly (>95%) homologous to Pepper vein yellows virus (PeVYV) from Israel and Greece on its 5' end half, while it is homologous to African eggplant yellows virus (AeYV) on its 3' half. Koch's postulates were proven by constructing a PeWBVYV infectious clone causing the pepper disease, which was in turn transmitted to test pepper plants by B. tabaci but not by aphids. PeWBVYV represents the first report of a whitefly-transmitted polerovirus.IMPORTANCE The high specificity of virus-vector interactions limits the possibility of a given virus changing vectors. Our report describes a new virus from a family of viruses strictly transmitted by aphids which is now transmitted by whiteflies (Bemisia tabaci) and not by aphids. This report presents the first description of polerovirus transmission by whiteflies. Whiteflies are highly resistant to insecticides and disperse over long distances, carrying virus inoculum. Thus, the report of such unusual polerovirus transmission by a supervector has extensive implications for the epidemiology of the virus disease, with ramifications concerning the international trade of agricultural commodities.


Assuntos
Capsicum/parasitologia , Capsicum/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Luteoviridae/isolamento & purificação , Doenças das Plantas/virologia , Animais , Israel , Luteoviridae/classificação , Luteoviridae/genética , Filogenia , Homologia de Sequência
12.
J Gen Virol ; 100(4): 721-731, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30762513

RESUMO

We have recently shown that Rickettsia, a secondary facultative bacterial symbiont that infects the whitefly B. tabaci is implicated in the transmission of Tomato yellow leaf curl virus (TYLCV). Infection with Rickettsia improved the acquisition and transmission of the virus by B. tabaci adults. Here we performed a transcriptomic analysis with Rickettsia-infected and uninfected B. tabaci adults before and after TYLCV acquisition. The results show a dramatic and specific activation of the immune system in the presence of Rickettsia before TYLCV acquisition. However, when TYLCV was acquired, it induced massive activation of gene expression in the Rickettsia uninfected population, whereas in the Rickettsia-infected population the virus induced massive down-regulation of gene expression. Fitness and choice experiments revealed that while Rickettsia-infected whiteflies are always more attracted to TYLCV-infected plants, this attraction is not always beneficiary for their offspring. These studies further confirm the role of Rickettsia in many aspects of B. tabaci interactions with TYLCV, and possibly serves as an important factor in the dissemination of the virus.


Assuntos
Begomovirus/patogenicidade , Fertilidade/fisiologia , Hemípteros/microbiologia , Hemípteros/virologia , Rickettsia/patogenicidade , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Infecções por Rickettsia/microbiologia , Viroses/virologia
13.
Sci Rep ; 7(1): 16945, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208900

RESUMO

Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is limited. It was recently reported that CLas induced changes in the nuclear architecture, and activated programmed cell death, in D. citri midgut cells. Here, we used electron and fluorescent microscopy and show that CLas induces the formation of endoplasmic reticulum (ER)-associated bodies. The bacterium recruits those ER structures into Liberibacter containing vacuoles (LCVs), in which bacterial cells seem to propagate. ER- associated LCV formation was unique to CLas, as we could not detect these bodies in B. trigonica infected with CLso. ER recruitment is hypothesized to generate a safe replicative body to escape cellular immune responses in the insect gut. Understanding the molecular interactions that undelay these responses will open new opportunities for controlling CLas.


Assuntos
Retículo Endoplasmático/microbiologia , Intestinos/microbiologia , Neópteros/microbiologia , Rhizobiaceae/crescimento & desenvolvimento , Vacúolos/microbiologia , Animais , Doenças das Plantas/microbiologia
14.
BMC Biol ; 14(1): 110, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974049

RESUMO

BACKGROUND: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. RESULTS: We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. CONCLUSIONS: The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit.


Assuntos
Genoma de Inseto/genética , Hemípteros/genética , Animais , Hemípteros/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Resistência a Inseticidas/fisiologia , Vírus de Plantas/patogenicidade
15.
J Virol ; 89(19): 9791-803, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178995

RESUMO

UNLABELLED: Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. IMPORTANCE: Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it contributes to the virus's spread and can impact vector biology. Tomato yellow leaf curl virus (TYLCV) is a devastating begomovirus that infects tomatoes. It is persistently transmitted by the whitefly Bemisia tabaci but is believed not to replicate in the insect. To demonstrate that TYLCV is, in fact, propagative (i.e., it replicates in its insect host), we hypothesized that insect defenses play a role in suppressing virus replication. We thus exposed whitefly to pesticide and heat stress conditions to manipulate its physiology, and we showed that under such conditions, the virus is able to replicate and significantly influence the insect's fecundity.


Assuntos
Begomovirus/fisiologia , Regulação Viral da Expressão Gênica/imunologia , Hemípteros/virologia , Insetos Vetores/virologia , Replicação Viral/fisiologia , Animais , Begomovirus/efeitos dos fármacos , Primers do DNA/genética , DNA Viral/análise , Fertilidade/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Hemípteros/imunologia , Temperatura Alta , Hibridização in Situ Fluorescente , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/imunologia , Praguicidas/toxicidade
16.
Curr Opin Virol ; 15: 1-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26196230

RESUMO

Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of this virus group and B. tabaci. Mechanisms and proteins encoded by the insect vector and its bacterial symbionts, which have been shown to be important for virus transmission, have been identified and thoroughly studied. Despite the economic importance of this group of viruses and their impact on the global agriculture, progress in investigating the virus-vector interactions is moving slowly when compared with similar virus-vector systems in plants and animals. Major advances in this field and future perspectives will be discussed in this review.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Agricultura , Animais , Bactérias/virologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/virologia , Simbiose
17.
J Vis Exp ; (84): e51030, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24637389

RESUMO

Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.


Assuntos
Begomovirus/isolamento & purificação , Hemípteros/microbiologia , Hibridização in Situ Fluorescente/métodos , Doenças das Plantas/microbiologia , Plantas/microbiologia , Animais , Begomovirus/genética , DNA Bacteriano/análise , DNA Viral/análise , Feminino , Hemípteros/virologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Plantas/virologia , RNA Bacteriano/análise , RNA Mensageiro/análise , RNA Viral/análise , Simbiose
18.
Pest Manag Sci ; 69(2): 274-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926932

RESUMO

BACKGROUND: The onion thrips, Thrips tabaci Lindeman, is a major pest of several crop plants in the genus Allium, such as onions, garlic and chives. In Israel, these crops are grown in open fields and in protected housing. This thrips is usually controlled by the application of chemical insecticides. In recent years, spinosad, emamectin benzoate and carbosulfan have been the major insecticides used for the control of the onion thrips. In the last 4 years, growers of chives and green onion from several regions of Israel have reported a significant decrease in the efficacy of insecticides used to control the onion thrips. RESULTS: The susceptibility of 14 populations of the onion thrips, collected mainly from chives between the years 2007 and 2011, to spinosad, emamectin benzoate and carbosulfan was tested using a laboratory bioassay. The majority of the populations showed significant levels of resistance to at least one of the insecticides. LC(50) values calculated for two of the studied populations showed that the resistance factor for spinosad compared with the susceptible population is 21 393, for carbosulfan 54 and for emamectin benzoate 36. Only two populations, collected from organic farms, were susceptible to the insecticides tested. CONCLUSION: This is the first report of a high resistance level to spinosad, the major insecticide used to control the onion thrips. Resistance cases to spinosad were associated with failures to control the pest. Populations resistant to spinosad also had partial or complete resistance to other insecticides used for controlling the onion thrips.


Assuntos
Carbamatos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Macrolídeos/farmacologia , Tisanópteros/efeitos dos fármacos , Animais , Combinação de Medicamentos , Controle de Insetos , Israel , Ivermectina/farmacologia , Cebolas/parasitologia , Doenças das Plantas/parasitologia
19.
Pest Manag Sci ; 67(12): 1493-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21604353

RESUMO

BACKGROUND: Ecdysteroids are steroid hormones that control moulting and govern several changes during metamorphoses in arthropods. The discovery of the same molecules (phytoecdysteroids) in several plant species displayed a wide array of rather beneficial agricultural impact. Many representatives of the genus Ajuga plants contain phytoecdysteroids with a 5ß-7-ene-6-one system exhibiting physiological activities in insects. RESULTS: By means of chromatographic (silica gel column, TLC) and LC-MS, two major ecdysteroids (20-hydroxyecdysone and cyasterone) have been isolated and identified from Israeli carpet bugle Ajuga iva (L.) Schreber (Lamiales: Lamiaceae) plants. Ajuga iva extract fractionated on the silica gel column yielded two fractions that showed high activity against the sweetpotato whitefly Bemisis tabaci and the persea mite Oligonychus perseae. A dose of 5 mg AI L(-1) of the purely identified A. iva ecdysterone significantly reduced fecundity, fertility and survival of these pests, while commercial 20-hydroxyecdysone at the same dose had lesser effects. CONCLUSION: The results demonstrate considerable efficacy of natural phytoecdysteroids against major agricultural pests, and suggests that these materials should be considered for potential development of friendly control agents.


Assuntos
Ajuga/química , Ecdisteroides/isolamento & purificação , Hemípteros/efeitos dos fármacos , Controle de Insetos , Ácaros/efeitos dos fármacos , Animais , Fracionamento Químico , Ecdisteroides/farmacologia , Feminino , Fertilidade/efeitos dos fármacos , Reguladores de Crescimento de Plantas/isolamento & purificação , Reguladores de Crescimento de Plantas/farmacologia , Estigmasterol/análogos & derivados , Estigmasterol/isolamento & purificação , Estigmasterol/farmacologia
20.
J Agric Food Chem ; 59(7): 2839-44, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20958045

RESUMO

A new chemical compound was tested for its insecticidal activity against several major insect pests. The compound, called "flufenerim", has a core pyrimidine structure and an unknown mode of action and showed potent activity against the sweet potato whitefly Bemisia tabaci (Gennadius), the green peach aphid Myzus persicae (Sulzer), and the African cotton leafworm Spodoptera littoralis (Boisduval); however, it did not show any activity against two thrips species: western flower thrips Frankliniella occidentalis (Pergande) and tobacco thrips Thrips tabaci (Lindeman). The compound was relatively potent against the three tested pests and caused mortality rates that reached up to 100% at concentrations under 10 mg of active ingredient (ai) L(-1). The action of the compound was very fast, and mortality was observed within 48 h after exposure of the insects to treated leaves. A unique characteristic of this compound is its very short residual activity, which approximates to 4 days after application under laboratory conditions and to 2 days under outdoor conditions for both B. tabaci and S. littoralis. Although this new compound's mode of action is yet unknown, its rapid and potent action against sap-sucking pests suggests that it acts on a very important target site in the insect body and possibly could be applied very close to harvesting.


Assuntos
Inseticidas , Pirimidinas , Animais , Afídeos , Feminino , Hemípteros , Resistência a Inseticidas , Oviposição , Resíduos de Praguicidas , Spodoptera , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...