Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1539-1547, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517473

RESUMO

The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.


Assuntos
Regulação da Expressão Gênica/genética , Poli A/genética , Poliadenilação/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Células 3T3/metabolismo , Animais , Genes Reporter/genética , Células HEK293 , Humanos , Camundongos , Plasmídeos/genética , Precursores de RNA/genética
2.
PLoS Genet ; 15(9): e1008371, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527906

RESUMO

The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of housekeeping genes. It contains at least seven subunits that are conserved in the human KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance. Here, we analyzed the mitotic phenotypes caused by RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds in greater detail. Depletion of any of these proteins in Drosophila S2 cells led to defects in chromosome segregation. Consistent with these findings, Rcd1, Rcd5 and MBD-R2 RNAi cells showed reduced levels of both Cid/CENP-A and the kinetochore component Ndc80. In addition, RNAi against any of the four genes negatively affected centriole duplication. In Wds-depleted cells, the mitotic phenotypes were similar but milder than those observed in Rcd1-, Rcd5- or MBD-R2-deficient cells. RT-qPCR experiments and interrogation of published datasets revealed that transcription of many genes encoding centromere/kinetochore proteins (e.g., cid, Mis12 and Nnf1b), or involved in centriole duplication (e.g., Sas-6, Sas-4 and asl) is substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells, and to a lesser extent in wds RNAi cells. During mitosis, both Rcd1-GFP and Rcd5-GFP accumulate at the centrosomes and the telophase midbody, MBD-R2-GFP is enriched only at the chromosomes, while Wds-GFP accumulates at the centrosomes, the kinetochores, the midbody, and on a specific chromosome region. Collectively, our results suggest that the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds depletion are primarily due to reduced transcription of genes involved in kinetochore assembly and centriole duplication. The differences in the subcellular localizations of the NSL components may reflect direct mitotic functions that are difficult to detect at the phenotypic level, because they are masked by the transcription-dependent deficiency of kinetochore and centriolar proteins.


Assuntos
Duplicação Cromossômica/genética , Segregação de Cromossomos/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Elementos Reguladores de Transcrição/genética , Fuso Acromático/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular/genética
3.
BMC Mol Cell Biol ; 20(1): 24, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286886

RESUMO

During production of the original article [1], there was a technical error that resulted in author corrections not being rendered in the PDF version of the article.

4.
BMC Mol Cell Biol ; 20(Suppl 1): 7, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31284878

RESUMO

BACKGROUND: The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila, there is only one CAMSAP, named Patronin. Previous work has shown that Patronin stabilizes the minus ends of non-mitotic MTs and is required for proper spindle elongation. However, the precise role of Patronin in mitotic spindle assembly is poorly understood. RESULTS: Here we have explored the role of Patronin in Drosophila mitosis using S2 tissue culture cells as a model system. We show that Patronin associates with different types of MT bundles within the Drosophila mitotic spindle, and that it is required for their stability. Imaging of living cells expressing Patronin-GFP showed that Patronin displays a dynamic behavior. In prometaphase cells, Patronin accumulates on short segments of MT bundles located near the chromosomes. These Patronin "seeds" extend towards the cell poles and stop growing just before reaching the poles. Our data also suggest that Patronin localization is largely independent of proteins acting at the MT minus ends such as Asp and Klp10A. CONCLUSION: Our results suggest a working hypothesis about the mitotic role of Patronin. We propose that Patronin binds the minus ends within MT bundles, including those generated from the walls of preexisting MTs via the augmin-mediated pathway. This would help maintaining MT association within the mitotic bundles, thereby stabilizing the spindle structure. Our data also raise the intriguing possibility that the minus ends of bundled MTs can undergo a limited polymerization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Segregação de Cromossomos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Polimerização , Ligação Proteica , Fuso Acromático/metabolismo
5.
Chromosoma ; 127(4): 475-487, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30030602

RESUMO

Border cell (BC) migration during Drosophila oogenesis is an excellent model for the analysis of the migratory and invasive cell behavior. Most studies on BC migration have exploited a slbo-Gal4 driver to regulate gene expression in these cells or to mark them. Here, we report that the slbo-Gal4 transgene present in the line #6458 from the Bloomington Stock Center is inserted within chickadee (chic), a gene encoding the actin-binding protein Profilin, which promotes actin polymerization and is known to be involved in cell migration. The chic6458 mutation caused by the transgene insertion behaves as a null chic allele and is homozygous lethal. To evaluate possible effects of chic6458 on the assessment of BC behavior, we generated new lines bearing the slbo-Gal4 transgene inserted into different second chromosome loci that do not appear to be involved in cell migration. Using these new lines and the slbo-Gal4-chic6458 line, we defined the functional relationships between the twinfilin (twf) and chic in BC migration. Migration of BCs is substantially reduced by mutations in twf, which encodes an actin-binding protein that inhibits actin filament assembly. The defects caused by twf mutations are significantly suppressed when the slbo-Gal4-chic6458, but not the new slbo-Gal4 drivers were used. These findings indicate twf and chic interact and function antagonistically during BC migration in Drosophila oogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Drosophila/genética , Drosophila/genética , Oogênese/genética , Ovário/citologia , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Cromossomos de Insetos , Drosophila/citologia , Feminino , Heterozigoto , Proteínas dos Microfilamentos/genética , Mutação , Profilinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...