Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1308663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379760

RESUMO

Cochlear implants are among the most successful neural prosthetic devices to date but exhibit poor frequency selectivity and the inability to consistently activate apical (low frequency) spiral ganglion neurons. These issues can limit hearing performance in many cochlear implant patients, especially for understanding speech in noisy environments and in perceiving or appreciating more complex inputs such as music and multiple talkers. For cochlear implants, electrical current must pass through the bony wall of the cochlea, leading to widespread activation of auditory nerve fibers. Cochlear implants also cannot be implanted in some individuals with an obstruction or severe malformations of the cochlea. Alternatively, intraneural stimulation delivered via an auditory nerve implant could provide direct contact with neural fibers and thus reduce unwanted current spread. More confined current during stimulation can increase selectivity of frequency fiber activation. Furthermore, devices such as the Utah Slanted Electrode Array can provide access to the full cross section of the auditory nerve, including low frequency fibers that are difficult to reach using a cochlear implant. However, further scientific and preclinical research of these Utah Slanted Electrode Array devices is limited by the lack of a chronic large animal model for the auditory nerve implant, especially one that leverages an appropriate surgical approach relevant for human translation. This paper presents a newly developed transbullar translabyrinthine surgical approach for implanting the auditory nerve implant into the cat auditory nerve. In our first of a series of studies, we demonstrate a surgical approach in non-recovery experiments that enables implantation of the auditory nerve implant into the auditory nerve, without damaging the device and enabling effective activation of the auditory nerve fibers, as measured by electrode impedances and electrically evoked auditory brainstem responses. These positive results motivate performing future chronic cat studies to assess the long-term stability and function of these auditory nerve implant devices, as well as development of novel stimulation strategies that can be translated to human patients.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5099-5102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086163

RESUMO

The Utah Electrode Array (UEA) and its variants (e.g., the Utah Slanted Electrode Array, or USEA) have been prominent contributors to advances in the field of neural engineering over the past decade. The most common means of inserting UEA and USEA devices into neural tissue is pneumatic insertion performed by an insertion wand and a pneumatic controller. As design changes from the well-established standards occur to better suit specialized surgical applications, it becomes essential to verify that the alterations do not compromise the structural integrity of the device during insertion. This paper characterizes and demonstrates the reliability of specialized USEAs and insertion wands designed for auditory nerve implants following pneumatic insertion into a rat sciatic nerve. The results show that proposed changes in the USEA form factor and pneumatic insertion ergonomics do not compromise implant stability and device structural viability.


Assuntos
Nervo Isquiático , Animais , Microeletrodos , Ratos , Reprodutibilidade dos Testes , Nervo Isquiático/fisiologia , Utah
3.
Adv Exp Med Biol ; 1101: 1-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729670

RESUMO

The Utah electrode array (UEA) and its many derivatives have become a gold standard for high-channel count bi-directional neural interfaces, in particular in human subject applications. The chapter provides a brief overview of leading electrode concepts and the context in which the UEA has to be understood. It goes on to discuss the key advances and developments of the UEA platform in the past 15 years, as well as novel wireless and system integration technologies that will merge into future generations of fully integrated devices. Aspects covered include novel device architectures that allow scaling of channel count and density of electrode contacts, material improvements to substrate, electrode contacts, and encapsulation. Further subjects are adaptations of the UEA platform to support IR and optogenetic simulation as well as an improved understanding of failure modes and methods to test and accelerate degradation in vitro such as to better predict device failure and lifetime in vivo.


Assuntos
Microeletrodos , Eletrodos Implantados/tendências , Humanos , Microeletrodos/tendências , Sistema Nervoso , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...