Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biomedicines ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680472

RESUMO

This Special Issue of Biomedicines aims to outline nucleic-acid-based strategies that have emerged as tools to regulate specific gene expression and, more recently, as a new class of medicines [...].

2.
Sci Rep ; 10(1): 18116, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093627

RESUMO

Reperfusion therapy during myocardial infarction (MI) leads to side effects called ischemia-reperfusion (IR) injury for which no treatment exists. While most studies have targeted the intrinsic apoptotic pathway to prevent IR injury with no successful clinical translation, we evidenced recently the potent cardioprotective effect of the anti-apoptotic Tat-DAXXp (TD) peptide targeting the FAS-dependent extrinsic pathway. The aim of the present study was to evaluate TD long term cardioprotective effects against IR injury in a MI mouse model. TD peptide (1 mg/kg) was administered in mice subjected to MI (TD; n = 21), 5 min prior to reperfusion, and were clinically followed-up during 6 months after surgery. Plasma cTnI concentration evaluated 24 h post-MI was 70%-decreased in TD (n = 16) versus Ctrl (n = 20) mice (p***). Strain echocardiography highlighted a 24%-increase (p****) in the ejection fraction mean value in TD-treated (n = 12) versus Ctrl mice (n = 17) during the 6 month-period. Improved cardiac performance was associated to a 54%-decrease (p**) in left ventricular fibrosis at 6 months in TD (n = 16) versus Ctrl (n = 20). In conclusion, targeting the extrinsic pathway with TD peptide at the onset of reperfusion provided long-term cardioprotection in a mouse model of myocardial IR injury by improving post-MI cardiac performance and preventing cardiac remodeling.


Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia
4.
Cardiovasc Res ; 116(3): 633-644, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147690

RESUMO

AIMS: Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction. METHODS AND RESULTS: An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments. CONCLUSIONS: Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Proteínas Correpressoras/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais , Receptor fas/metabolismo
5.
Methods Mol Biol ; 1324: 317-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202278

RESUMO

Cell-penetrating peptide (CPP)-mediated delivery of phosphorodiamidate morpholino oligomers (PMO) results in efficient exon skipping and has shown great promise as a potential therapy for Duchenne muscular dystrophy (DMD). However, large differences in efficiency have been observed between CPPs and in delivery to different tissues. Cellular trafficking has appeared to be an important determinant of activity. This chapter provides details of experimental procedures to monitor exon skipping efficiency and cellular trafficking of Pip6a-PMO, a recently developed and particularly efficient conjugate, in skeletal H2k cells and in primary cardiomyocytes from mdx mice. Similar procedures may be used in principle to evaluate any free or vector-associated oligonucleotide for exon skipping.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Éxons , Morfolinos/administração & dosagem , Distrofia Muscular de Duchenne/terapia , Transfecção/métodos , Sequência de Aminoácidos , Animais , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Peptídeos Penetradores de Células/síntese química , Células Cultivadas , Eletroforese em Gel de Ágar/métodos , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Morfolinos/genética , Morfolinos/uso terapêutico , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase/métodos
6.
Adv Drug Deliv Rev ; 87: 52-67, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-25747758

RESUMO

Oligonucleotide-based drugs have received considerable attention for their capacity to modulate gene expression very specifically and as a consequence they have found applications in the treatment of many human acquired or genetic diseases. Clinical translation has been often hampered by poor biodistribution, however. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular delivery of non-permeant biomolecules such as nucleic acids. This review focuses on CPP-delivery of several classes of oligonucleotides (ONs), namely antisense oligonucleotides, splice switching oligonucleotides (SSOs) and siRNAs. Two main strategies have been used to transport ONs with CPPs: covalent conjugation (which is more appropriate for charge-neutral ON analogues) and non-covalent complexation (which has been used for siRNA delivery essentially). Chemical synthesis, mechanisms of cellular internalization and various applications will be reviewed. A comprehensive coverage of the enormous amount of published data was not possible. Instead, emphasis has been put on strategies that have proven to be effective in animal models of important human diseases and on examples taken from the authors' own expertise.


Assuntos
Antibacterianos/administração & dosagem , Antivirais/administração & dosagem , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Nanopartículas/química , Oligonucleotídeos/administração & dosagem , Sequência de Aminoácidos , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Transporte Biológico , Linhagem Celular , Endocitose , Humanos , Dados de Sequência Molecular , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico
7.
Nucleic Acids Res ; 42(5): 3207-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366877

RESUMO

Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Éxons , Morfolinos/metabolismo , Mioblastos Esqueléticos/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Animais , Células Cultivadas , Endocitose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Splicing de RNA
8.
Mol Ther Nucleic Acids ; 2: e124, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24064708

RESUMO

We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013.51; published online 24 September 2013.

10.
J Control Release ; 156(2): 146-53, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21839124

RESUMO

There is an obvious need to develop pharmacological strategies to protect the heart in patients suffering from acute myocardial infarction. Apoptosis was evidenced as a main contributor of myocardial ischemia-reperfusion (IR) injury. Our cardioprotective strategy was based on the use of four cell penetrating peptides (CPP: Tat, (RXR)4, Bpep and Pip2b) which were conjugated to the BH4-peptide, derived from the BH4 domain of the Bcl-xL anti-apoptotic protein. These CPP-BH4 conjugates were able to reduce staurosporine-induced apoptosis in primary cardiomyocytes in vitro. Although Pip2b-BH4 was more efficient in terms of cellular uptake, it was as efficient as Tat-BH4 for its anti-apoptotic activity. As required for potential therapeutic application their cardioprotective effects were evaluated in an in vivo mouse model of myocardial IR injury. Our results clearly show that a single low dose (1 mg/kg) injection of Tat-BH4 and Pip2b-BH4 administered intravenously 5 min before reperfusion was able to drastically reduce infarct size (~47%) and to inhibit apoptosis (~60%) in the left ventricle of treated mice. Importantly, these effects are not observed following the injection of CPP alone or scrambled version of BH4. This study evidences that the Pip2b CPP, designed for oligonucleotides translocation, as well as the widely used natural Tat CPP exhibit similar efficacy in vivo to deliver BH4 anti-apoptotic peptide to the reperfused myocardium and may thus become useful therapeutic tools to treat acute myocardial infarction in the clinical setting.


Assuntos
Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Peptídeos/química , Peptídeos/uso terapêutico , Proteína bcl-X/química , Proteína bcl-X/uso terapêutico , Sequência de Aminoácidos , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Células Cultivadas , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
11.
Methods Mol Biol ; 764: 75-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21748634

RESUMO

Progress in our understanding of the molecular pathogenesis of human malignancies has provided therapeutic targets amenable to oligonucleotide (ON)-based strategies. Antisense ON-mediated splicing regulation in particular offers promising prospects since the majority of human genes undergo alternative splicing and since splicing defects have been found in many diseases. However, their implementation has been hampered so far by the poor bioavailability of nucleic acids-based drugs. Cell-penetrating peptides (CPPs) now appear as promising non-viral delivery vector for non-permeant biomolecules. We describe here new CPPs allowing the delivery of splice redirecting steric-block ON using either chemical conjugation or non-covalent complexation. We also describe a convenient and robust splice redirecting assay which allows the quantitative assessment of ON nuclear delivery.


Assuntos
Processamento Alternativo , Bioensaio , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Substâncias Macromoleculares/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/análise , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Feminino , Citometria de Fluxo , Genes Reporter , Células HeLa , Humanos , Luciferases/análise , Substâncias Macromoleculares/química , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácidos Esteáricos/metabolismo
12.
J Control Release ; 153(2): 163-72, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21536086

RESUMO

Conjugates of cell-penetrating peptides (CPP) and splice redirecting oligonucleotides (ON) display clinical potential as attested by in vivo experimentation in murine models of Duchenne muscular dystrophy. However, micromolar concentrations of these conjugates are required to obtain biologically relevant responses as a consequence of extensive endosomal sequestration following endocytosis. Recent work from our group has demonstrated that appending stearic acid to CPPs increases their efficiency and that the inclusion of pH titrable entities leads to further improvement. Moreover, these modified CPPs form non covalent complexes with charged ON analogs or siRNAs, which allows decreasing the concentrations of ONs by nearly one log. These modified CPPs and the parent peptides have been compared here in the same in vitro model in terms of cell uptake, trafficking and splicing redirection activity. The increased splicing redirection activity of our modified CPPs cannot be explained by differences in cell uptake but rather by their enhanced ability to escape from endocytic vesicles. Accordingly, a clear correlation between membrane destabilizing activity and splicing redirection was observed using a liposome leakage assay. Studies of cellular trafficking for the most active PF6:ON complexes indicate uptake by clathrin-mediated endocytosis using either FACS cell uptake or a splicing redirection functional assay. Acidification of intracellular vesicles and membrane potential were found important for splicing redirection but not for cell uptake. These results do confirm that the increased potency of PF6:ON complexes is not due to the use of a non endocytic route of cell internalization as proposed for some CPPs.


Assuntos
Peptídeos Penetradores de Células/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Sequência de Aminoácidos , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/metabolismo , Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Splicing de RNA
13.
Nucleic Acids Res ; 39(9): 3972-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245043

RESUMO

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Quinolinas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Endossomos/metabolismo , Humanos , Indicadores e Reagentes , Mediadores da Inflamação/metabolismo , Lipídeos , Lipopeptídeos/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Quinolinas/metabolismo
14.
Methods Mol Biol ; 683: 307-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21053139

RESUMO

Several strategies based on synthetic oligonucleotides (ON) have been proposed to control gene expression. As for most biomolecules, however, delivery has remained a major roadblock for in vivo applications. Conjugation of steric-block neutral DNA mimics, such as peptide nucleic acids (PNA) or phosphorodiamidate morpholino oligonucleotides (PMO), to cell-penetrating peptides (CPP) has recently been proposed as a new delivery strategy. It is particularly suitable for sequence-specific interference with pre-mRNA splicing, thus offering various applications in fundamental research and in therapeutics. The chemical synthesis of these CPP-ON conjugates will be described as well as easy-to-implement assays to monitor cellular uptake, endosome leakage, and efficiency of splicing redirection.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Splicing de RNA/genética , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/química , Dissulfetos/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Endocitose , Citometria de Fluxo , Células HeLa , Humanos , Lipossomos/metabolismo , Luciferases/genética , Maleimidas/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Oligonucleotídeos/química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/metabolismo , Saponinas/metabolismo
15.
Bioconjug Chem ; 21(10): 1902-11, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20879728

RESUMO

Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were assayed in a HeLa pLuc705 cell assay for luciferase up-regulation and splicing redirection. Whereas 8-Arg branched peptide-PNA conjugates showed poor activity compared to a linear (R-Ahx-R)(4)-PNA conjugate, 2-branched and some 4-branched 12 and 16 Arg peptide-PNA conjugates showed activity similar to that of the corresponding linear peptide-PNA conjugates. Many of the 12- and 16-Arg conjugates retained significant activity in the presence of serum. Evidence showed that biological activity in HeLa pLuc705 cells of the PNA conjugates of branched and linear (R-Ahx-R) peptides is associated with an energy-dependent uptake pathway, predominantly clathrin-dependent, but also with some caveolae dependence.


Assuntos
Arginina , Dendrímeros/síntese química , Dendrímeros/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Splicing de RNA , Motivos de Aminoácidos , Sequência de Bases , Dendrímeros/química , Células HeLa , Humanos , Ácidos Nucleicos Peptídicos/genética , Peptídeos/química , Transporte Proteico
16.
J Control Release ; 145(2): 149-58, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20362021

RESUMO

Modulation of pre-mRNA splicing by steric-block oligonucleotides constitutes a promising strategy for the treatment of many diseases, but requires efficient delivery to cell nuclei. In the present study, we evaluated the efficacy of a non-covalent strategy that combines a cell penetrating peptide with a lipoplex-based formulation to mediate the delivery of splice-switching oligonucleotides. The splice correcting ability of these new formulations was assessed using splice-switching oligonucleotides targeted towards the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc/705 splice correction model. Importantly, the optimal splice correcting activity was exhibited by the formulation containing both lipid and peptide components, the order of component addition in these formulations being crucial for their efficacy. Our results demonstrate that the inclusion of cationic liposomes in the formulation provides the ability to improve release from endocytic vesicles, a barrier that severely limits the efficiency of oligonucleotide delivery by cell penetrating peptides. On the other hand, cell penetrating peptides potentiate the cellular uptake and delivery of the oligonucleotides by the lipoplexes. Moreover, when combining cell penetrating peptides with the lipoplex formulations, a significant reduction in the amount of required cationic lipid could be achieved, while maintaining or even enhancing biological activity.


Assuntos
Peptídeos Penetradores de Células/química , Lipídeos/genética , Oligonucleotídeos/genética , Cátions , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos , Células HeLa , Humanos , Lipossomos , Peptídeos/genética , Piperazinas/química , Piperazinas/metabolismo , Pirenos/química , Pirenos/metabolismo , Precursores de RNA/genética , Splicing de RNA , Globinas beta/genética
17.
J Control Release ; 141(1): 42-51, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19744531

RESUMO

In recent years, oligonucleotide-based molecules have been intensely used to modulate gene expression. All these molecules share the common feature of being essentially impermeable over cellular membranes and they therefore require efficient delivery vectors. Cell-penetrating peptides are a group of delivery peptides that has been readily used for nucleic acid delivery. In particular, polyarginine and derivates thereof, i.e. the (RxR)(4) peptide, have been applied with success both in vitro and in vivo. A major problem, however, with these arginine-rich peptides is that they frequently remain trapped in endosomal compartments following internalization. The activity of polyarginine has previously been improved by conjugation to a stearyl moiety. Therefore, we sought to investigate what impact such modification would have on the pre-clinically used (RxR)(4) peptide for non-covalent delivery of plasmids and splice-correcting oligonucleotides (SCOs) and compare it with stearylated Arg9 and Lipofectamine 2000. We show that stearyl-(RxR)(4) mediates efficient plasmid transfections in several cell lines and the expression levels are significantly higher than when using unmodified (RxR)(4) or stearylated Arg9. Although the transfection efficiency is lower than with Lipofectamine 2000, we show that stearyl-(RxR)(4) is substantially less toxic. Furthermore, using a functional splice-correction assay, we show that stearyl-(RxR)(4) complexed with 2'-OMe SCOs promotes significant splice correction whereas stearyl-Arg9 fails to do so. Moreover, stearyl-(RxR)(4) promotes dose-dependent splice correction in parity with (RxR)(4)-PMO covalent conjugates, but at least 10-times lower concentration. These features make this stearic acid modified analog of (RxR)(4) an intriguing vector for future in vivo experiments.


Assuntos
Portadores de Fármacos/química , Ácidos Nucleicos/administração & dosagem , Peptídeos/química , Oligonucleotídeos Fosforotioatos/administração & dosagem , Ácidos Esteáricos/química , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Células CHO , Permeabilidade da Membrana Celular , Proliferação de Células , Cricetinae , Cricetulus , Citometria de Fluxo , Expressão Gênica , Células HeLa , Humanos , Lipídeos , Luciferases/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/genética , Plasmídeos , Transfecção
18.
Cell Mol Life Sci ; 67(5): 715-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19898741

RESUMO

Crossing biological barriers represents a major limitation for clinical applications of biomolecules such as nucleic acids, peptides or proteins. Cell penetrating peptides (CPP), also named protein transduction domains, comprise short and usually basic amino acids-rich peptides originating from proteins able to cross biological barriers, such as the viral Tat protein, or are rationally designed. They have emerged as a new class of non-viral vectors allowing the delivery of various biomolecules across biological barriers from low molecular weight drugs to nanosized particles. Encouraging data with CPP-conjugated oligonucleotides have been obtained both in vitro and in vivo in animal models of diseases such as Duchenne muscular dystrophy. Whether CPP-cargo conjugates enter cells by direct translocation across the plasma membrane or by endocytosis remains controversial. In many instances, however, endosomal escape appears as a major limitation of this new delivery strategy.


Assuntos
Células/metabolismo , Sistemas de Liberação de Medicamentos , Oligonucleotídeos/administração & dosagem , Peptídeos/farmacocinética , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Distrofia Muscular de Duchenne/terapia , Peptídeos/administração & dosagem
19.
Bioconjug Chem ; 20(8): 1523-30, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19591462

RESUMO

The full therapeutic potential of oligonucleotide (ON)-based agents has been hampered by cellular delivery challenges. Cell-penetrating peptides (CPP) represent promising delivery vectors for nucleic acids, and their potential has recently been evaluated using a functional splicing redirection assay, which capitalizes on the nuclear delivery of splice-correcting steric-block ON analogues such as peptide nucleic acids (PNA). Despite encouraging in vitro and in vivo data with arginine-rich CPP-steric block conjugates, mechanistic studies have shown that entrapment within the endosome/lysosome compartment after endocytosis remains a limiting factor. Previous work from our group has shown that CPP oligomerization greatly improves cellular delivery and increases transfection of plasmid DNA. We now report the chemical synthesis and the evaluation of multivalent CPP-PNA constructs incorporating monomeric (p53(mono)) and dendrimer-like tetrameric (p53(tet)) forms of the p53 tetramerization domain containing peptide, a 10 arginine CPP domain (R10), and a splice redirecting PNA (PNA705). These CPP-PNA conjugates were termed R10p53(tet)-PNA705 and R10p53(mono)-PNA705, referring to their oligomerization state. The present study demonstrates that the splicing redirection efficiency of PNA705 is much greater in the context of the tetrameric R10p53(tet)-PNA705 construct than for the monomeric and occurs at nanomolar concentrations, demonstrating that multivalency is an important factor in delivering PNA into cells.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , Peptídeos Penetradores de Células/síntese química , Dendrímeros/síntese química , Técnicas de Transferência de Genes , Vetores Genéticos , Células HeLa , Humanos , Ácidos Nucleicos Peptídicos/síntese química , Ácidos Nucleicos Peptídicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...