Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(4): 1265-1275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177833

RESUMO

Cannulation process intervenes before implantation of pedicle screw and depends on the surgeon's experience. A reliable experimental protocol has been developed for the characterization of the slipping behavior of the surgical tool on the cortical shell simulated by synthetic materials. Three types of synthetic foam samples with three different densities were tested using an MTS Acumen 3 A/T electrodynamic device with a tri-axis 3 kN Kistler load cell mounted on a surgical tool, moving at a constant rotational speed of 10° mm-1 and performing a three-step cannulation test. Cannulation angle varied between 10° and 30°. Synthetic samples were scanned after each tests, and cannulation coefficient associated to each perforation section was computed. Reproducibility tests resulted in an ICC for Sawbone samples of 0.979 (p < 0.001) and of 0.909 (p < 0.001) for Creaplast and Sawbone samples. Cannulation coefficient and maximum force in Z-axis are found the best descriptors of the perforation. Angular threshold for perforation prediction was found to be 17.5° with an area under the curve of the Receiver Operating Characteristic of 89.5%. This protocol characterizes the cannulation process before pedicle screw insertion and identifies the perforation tool angle until which the surgical tool slips on the cortical shell depending on bone quality.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Reprodutibilidade dos Testes , Osso e Ossos
2.
Clin Biomech (Bristol, Avon) ; 110: 106102, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769380

RESUMO

BACKGROUND: Pedicular screws pull-out has been well studied unlike their insertion. A need for characterizing cannulation before pedicle screw implantation is highlighted in literature and offers promising prospects for future intra-operation instrumentation. A reliable cannulation protocol for ex-vivo testing in swine and cadaver vertebrae is presented in this work to predict extra pedicular perforation. METHODS: An MTS Acumen 3 A/T electrodynamic device, with a tri-axis 3 kN Kistler load cell mounted on a surgical tool was used to reproduce surgeon's gesture by moving at a constant rotational speed of 10°/mm and performing a three-section test. Perforation of the pedicle's cortical shell was planned through a design of experiment on the surgical tool angle at the entry point. Samples were scanned before and after mechanical tests and reproducibility of the protocol was tested on synthetic foam. Computation of the angle between cannulation tool and pedicle cortical shell was performed as well as cannulation coefficient of each perforation section. FINDINGS: A total of 68 pedicles were tested: 19 perforated and 21 non-perforated human pedicles, 17 perforated and 16 non-perforated swine pedicles. The reproducibility of the protocol for cannulation coefficient computation resulted in an intraclass correlation coefficient of 0.979. Cannulation coefficients results presented variability within spinal levels as well as between swine and human model. Correlation between bone density and cannulation coefficient was found significant (p < 0.005). Torque measurement was found to be the best predictor of perforation. Threshold of angle for prediction of perforation was found to be 21.7°. INTERPRETATION: Characterizing pedicle cannulation enables to predict extra pedicular perforation. Influence of bone mineral density and patient-specific morphology on pedicle cannulation has been highlighted together with a comparison of swine and cadaver models.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Animais , Suínos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Coluna Vertebral/cirurgia , Cadáver , Cateterismo
3.
J Biomech ; 146: 111396, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459849

RESUMO

The Mitral Annulus (MA) is an anisotropic, fibrous, flexible and dynamical structure. While MA dynamics are well documented, its passive mechanical properties remain poorly investigated to complete the design of adequate prostheses. Mechanical properties in traction on four sections of the MA (aortic, left, posterior and right segments) were assessed using a traction test system with a 30 N load cell and pulling jaws for sample fixation. Samples were submitted to a 1.5 N pre-load, 10 pre-conditioning cycles. Three strain rates were tested (5 %/min, 7 %/min and 13 %/min), the first two up to 10 % strain and the last until rupture. High-resolution diffusion-MRI provided microstructural mapping of fractional anisotropy and mean diffusion within muscle and collagen fibres. Ten MA from porcine hearts were excised resulting in 40 tested samples, out of which 28 were frozen prior to testing. Freezing samples significantly increased Young Moduli for all strain rates. No significant differences were found between Young Moduli at different strain rates (fresh samples 2.4 ± 1.1 MPa, 3.8 ± 2.2 MPa and 3.1 ± 1.8 MPa for increasing strain rates in fresh samples), while significant differences were found when comparing aortic with posterior and posterior with lateral (p < 0.012). Aortic segments deformed the most (24.1 ± 9.4 %) while lateral segments endured the highest stress (>0.3 MPa), corresponding to higher collagen fraction (0.46) and fractional anisotropy. Passive machinal properties differed between aortic and lateral segments of the MA. The process of freezing samples altered their mechanical properties. Underlying microstructural differences could be linked to changes in strain response.


Assuntos
Valva Mitral , Tração , Suínos , Animais , Valva Mitral/fisiologia , Fenômenos Biomecânicos , Módulo de Elasticidade , Colágeno/análise , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...