Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EJNMMI Res ; 14(1): 34, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564068

RESUMO

BACKGROUND: In juvenile systemic lupus erythematosus (j-SLE) with neuropsychiatric (NP) symptoms, there is a lack of diagnostic biomarkers. Thus, we study whether PET-FDG may identify any metabolic dysfunction in j-NPSLE. METHODS: A total of 19 18FDG-PET exams were consecutively performed using PET-MRI system in 11 non-sedated patients presenting with j-NPSLE (11-18y) for less than 18 months (m) and without any significant lesion at MRI. Psychiatric symptoms were scored from 0 (none) to 3 (severe) at PET time. PET images were visually analyzed and voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping (spm) with an age-matched control group, at threshold set > 50 voxels using both p < 0.001 uncorrected (unc.) and p < 0.05 corrected family wise error (FWE). RESULTS: Patients exhibited mainly psychiatric symptoms, with diffuse inflammatory j-NPSLE. First PET (n = 11) was performed at a mean of 15y of age, second/third PET (n = 7/n = 1) 6 to 19 m later. PET individual analysis detected focal bilateral anomalies in 13/19 exams visually but 19/19 using spm (unc.), mostly hypermetabolic areas (18/19). A total of 15% of hypermetabolic areas identified by spm had been missed visually. PET group analysis (n = 19) did not identify any hypometabolic area, but a large bilateral cortico-subcortical hypermetabolic pattern including, by statistical decreasing order (unc.), thalamus, subthalamic brainstem, cerebellum (vermis and cortex), basal ganglia, visual, temporal and frontal cortices. Mostly the subcortical hypermetabolism survived to FWE analysis, being most intense and extensive (51% of total volume) in thalamus and subthalamus brainstem. Hypermetabolism was strictly subcortical in the most severe NP subgroup (n = 8, scores 2-3) whereas it also extended to cerebral cortex, mostly visual, in the less severe subgroup (n = 11, scores 0-1), but difference was not significant. Longitudinal visual analysis was inconclusive due to clinical heterogeneity. CONCLUSIONS: j-NPSLE patients showed a robust bilateral cortico-subcortical hypermetabolic network, focused subcortically, particularly in thalamus, proportionally to psychiatric features severity. Further studies with larger, but homogeneous, cohorts are needed to determine the sensitivity and specificity of this dysfunctional pattern as a potential biomarker in diffuse inflammatory j-NPSLE with normal brain MRI.

2.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949616

RESUMO

BACKGROUND: Despite the promising efficacy of immune checkpoint blockers (ICB), tumor resistance and immune-related adverse events hinder their success in cancer treatment. To address these challenges, intratumoral delivery of immunotherapies has emerged as a potential solution, aiming to mitigate side effects through reduced systemic exposure while increasing effectiveness by enhancing local bioavailability. However, a comprehensive understanding of the local and systemic distribution of ICBs following intratumoral administration, as well as their impact on distant tumors, remains crucial for optimizing their therapeutic potential.To comprehensively investigate the distribution patterns following the intratumoral and intravenous administration of radiolabeled anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and to assess its corresponding efficacy in both injected and non-injected tumors, we conducted an immunoPET imaging study. METHODS: CT26 and MC38 syngeneic colorectal tumor cells were implanted subcutaneously on both flanks of Balb/c and C57Bl/6 mice, respectively. Hamster anti-mouse CTLA-4 antibody (9H10) labeled with zirconium-89 ([89Zr]9H10) was intratumorally or intravenously administered. Whole-body distribution of the antibody was monitored by immunoPET imaging (n=12 CT26 Balb/c mice, n=10 MC38 C57Bl/6 mice). Tumorous responses to injected doses (1-10 mg/kg) were correlated with specific uptake of [89Zr]9H10 (n=24). Impacts on the tumor microenvironment were assessed by immunofluorescence and flow cytometry. RESULTS: Half of the dose was cleared into the blood 1 hour after intratumoral administration. Despite this, 7 days post-injection, 6-8% of the dose remained in the intratumoral-injected tumors. CT26 tumors with prolonged ICB exposure demonstrated complete responses. Seven days post-injection, the contralateral non-injected tumor uptake of the ICB was comparable to the one achieved through intravenous administration (7.5±1.7% ID.cm-3 and 7.6±2.1% ID.cm-3, respectively) at the same dose in the CT26 model. This observation was confirmed in the MC38 model. Consistent intratumoral pharmacodynamic effects were observed in both intratumoral and intravenous treatment groups, as evidenced by a notable increase in CD8+T cells within the CT26 tumors following treatment. CONCLUSIONS: ImmunoPET-derived pharmacokinetics supports intratumoral injection of ICBs to decrease systemic exposure while maintaining efficacy compared with intravenous. Intratumoral-ICBs lead to high local drug exposure while maintaining significant therapeutic exposure in non-injected tumors. This immunoPET approach is applicable for clinical practice to support evidence-based drug development.


Assuntos
Neoplasias Colorretais , Imunoterapia , Animais , Camundongos , Antígeno CTLA-4 , Imunoterapia/métodos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Microambiente Tumoral
4.
EJNMMI Res ; 13(1): 13, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780091

RESUMO

PURPOSE: To decipher the relevance of visual and semi-quantitative 6-fluoro-(18F)-L-DOPA (18F-DOPA) interpretation methods for the diagnostic of idiopathic Parkinson disease (IPD) in hybrid positron emission tomography (PET) and magnetic resonance imaging. MATERIAL AND METHODS: A total of 110 consecutive patients (48 IPD and 62 controls) with 11 months of median clinical follow-up (reference standard) were included. A composite visual assessment from five independent nuclear imaging readers, together with striatal standard uptake value (SUV) to occipital SUV ratio, striatal gradients and putamen asymmetry-based semi-quantitative PET metrics automatically extracted used to train machine learning models to classify IPD versus controls. Using a ratio of 70/30 for training and testing sets, respectively, five classification models-k-NN, LogRegression, support vector machine, random forest and gradient boosting-were trained by using 100 times repeated nested cross-validation procedures. From the best model on average, the contribution of PET parameters was deciphered using the Shapley additive explanations method (SHAP). Cross-validated receiver operating characteristic curves (cv-ROC) of the most contributive PET parameters were finally estimated and compared. RESULTS: The best machine learning model (k-NN) provided final cv-ROC of 0.81. According to SHAP analyses, visual PET metric was the most important contributor to the model overall performance, followed by the minimum between left and right striatal to occipital SUV ratio. The 10-time cv-ROC curves of visual, min SUVr or both showed quite similar performance (mean area under the ROC of 0.81, 0.81 and 0.79, respectively, for visual, min SUVr or both). CONCLUSION: Visual expert analysis remains the most relevant parameter to predict IPD diagnosis at 11 months of median clinical follow-up in 18F-FDOPA. The min SUV ratio appears interesting in the perspective of simple semi-automated diagnostic workflows.

5.
Clin Nucl Med ; 48(2): 112-118, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607361

RESUMO

PURPOSE: The aim of this study was to compare the diagnostic performance of the rabbit visual pattern versus the one endorsed by the EANM/SNMMI for the diagnosis of parkinsonian syndromes in PET/MRI. PATIENTS AND METHODS: The 18F-DOPA PET images of 129 consecutive patients (65 Park+ and 64 controls) with 1 year of clinical follow-up were reviewed independently by 5 experienced readers on the same imaging workstation, blinded to the final clinical diagnosis. Two visual methods were assessed independently, with several days to months of interval: the criteria endorsed by EANM/SNMMI and the "rabbit" shape of the striate assessed on 3D MIP images. The sensitivities, specificities, likelihood ratios, and predictive values of the 2 diagnostic tests were estimated simultaneously by using the "comparison of 2 binary diagnostic tests to a paired design" method. RESULTS: The estimated 95% confidence interval (CI) of sensitivities and specificities ranged from 49.4% to 76.5% and from 83.2% to 97.7%, respectively. The 95% CI estimates of positive and negative likelihood ratios ranged from 3.8 to 26.7 and from 0.26 to 0.56, respectively. The 95% CI estimates of the positive and negative predictive values ranged from 78.1% to 96.7% and from 60.3% to 81.4%, respectively. For all the parameters, no statistical difference was observed between the 2 methods (P > 0.05). The rabbit sign reduced the readers' discrepancies by 25%, while maintaining the same performance. CONCLUSIONS: The rabbit visual pattern appears at least comparable to the current EANM/SNMMI reference procedure for the assessment of parkinsonian syndromes in daily clinical practice, without the need of any image postprocessing. Further multicenter prospective studies would be of relevance to validate these findings.


Assuntos
Transtornos Parkinsonianos , Tomografia por Emissão de Pósitrons , Humanos , Coelhos , Animais , Estudos Prospectivos , Transtornos Parkinsonianos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade , Di-Hidroxifenilalanina
6.
J Magn Reson Imaging ; 58(1): 122-132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36269053

RESUMO

BACKGROUND: Head and neck cancer (HNC) is the sixth most prevalent cancer worldwide. Dynamic contrast-enhanced MRI (DCE-MRI) helps in diagnosis and prognosis. Quantitative DCE-MRI requires an arterial input function (AIF), which affects the values of pharmacokinetic parameters (PKP). PURPOSE: To evaluate influence of four individual AIF measurement methods on quantitative DCE-MRI parameters values (Ktrans , ve , kep , and vp ), for HNC and muscle. STUDY TYPE: Prospective. POPULATION: A total of 34 HNC patients (23 males, 11 females, age range 24-91) FIELD STRENGTH/SEQUENCE: A 3 T; 3D SPGR gradient echo sequence with partial saturation of inflowing spins. ASSESSMENT: Four AIF methods were applied: automatic AIF (AIFa) with up to 50 voxels selected from the whole FOV, manual AIF (AIFm) with four voxels selected from the internal carotid artery, both conditions without (Mc-) or with (Mc+) motion correction. Comparison endpoints were peak AIF values, PKP values in tumor and muscle, and tumor/muscle PKP ratios. STATISTICAL TESTS: Nonparametric Friedman test for multiple comparisons. Nonparametric Wilcoxon test, without and with Benjamini Hochberg correction, for pairwise comparison of AIF peak values and PKP values for tumor, muscle and tumor/muscle ratio, P value ≤ 0.05 was considered statistically significant. RESULTS: Peak AIF values differed significantly for all AIF methods, with mean AIFmMc+ peaks being up to 66.4% higher than those for AIFaMc+. Almost all PKP values were significantly higher for AIFa in both, tumor and muscle, up to 76% for mean Ktrans values. Motion correction effect was smaller. Considering tumor/muscle parameter ratios, most differences were not significant (0.068 ≤ Wilcoxon P value ≤ 0.8). DATA CONCLUSION: We observed important differences in PKP values when using either AIFa or AIFm, consequently choice of a standardized AIF method is mandatory for DCE-MRI on HNC. From the study findings, AIFm and inflow compensation are recommended. The use of the tumor/muscle PKP ratio should be of interest for multicenter studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Meios de Contraste , Neoplasias de Cabeça e Pescoço , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste/farmacocinética , Estudos Prospectivos , Aumento da Imagem/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Reprodutibilidade dos Testes
7.
Biomed Pharmacother ; 156: 113994, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411655

RESUMO

Organic Anion-Transporting Polypeptides (OATPs) are known to control the liver uptake of many drugs. Non-hepatic expression of OATPs has been reported although functional importance for whole-body pharmacokinetics (WBPK) remains unknown. Glyburide is a well described substrate of several hepatic and non-hepatic OATPs. Dynamic whole-body positron emission tomography (DWB-PET) with [11C]glyburide was performed in humans for determination of the importance of OATPs for liver uptake and WBPK. Seven healthy male subjects (24.7 ± 3.2 years) underwent [11C]glyburide PET scan with concomitant blood sampling. All subjects underwent baseline [11C]glyburide PET scan. Five subjects underwent a subsequent [11C]glyburide PET scan after infusion of the potent OATP inhibitor rifampicin (9 mg/kg i.v.). The transfer constant (kuptake) of [11C]glyburide from blood to the liver was estimated using the integration plot method. The tissue exposure of [11C]glyburide was described by the area under the time-activity curve (AUC) and corresponding tissue/blood ratio (AUCR). [11C]glyburide was barely metabolized in both the baseline and rifampicin conditions. Parent (unmetabolized) [11C]glyburide accounted for > 90 % of the plasma radioactivity. Excellent correlation was found between radioactive counting in arterial blood samples and in the image-derived input function, in both the baseline and rifampicin conditions (R2 = 97.9 %, p < 0.01). [11C]glyburide predominantly accumulated in the liver. Rifampicin decreased liver kuptake by 77.3 ± 7.3 %, which increased exposure in blood, kidneys, spleen, myocardium and brain (p < 0.05). No significant change in AUCR was observed except in the liver (p < 0.01). [11C]glyburide benefits from metabolic stability and high sensitivity to OATP inhibition which enables quantitative determination of OATP function. DWB-PET suggests negligible role for non-hepatic OATPs in controlling the tissue distribution of [11C]glyburide.


Assuntos
Glibureto , Transportadores de Ânions Orgânicos , Humanos , Masculino , Rifampina/farmacologia , Fígado/diagnóstico por imagem , Proteínas de Membrana Transportadoras , Tomografia por Emissão de Pósitrons , Peptídeos , Ânions
8.
J Nucl Med ; 63(8): 1259-1265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34933891

RESUMO

PET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor. Methods: The pharmacokinetics, biodistribution, and dosimetry of the 3 89Zr-labeled C4 ligands were compared by longitudinal PET/CT imaging in nude mice bearing subcutaneous human non-small cell lung cancer xenografts with positive (H1975 model) or negative (A549 model) endogenous PD-L1 expression. Results: The C4 radioligands substantially accumulated in PD-L1-positive tumors but not in PD-L1-negative tumors or in blocked PD-L1-positive tumors, confirming their PD-L1-specific tumor targeting. 89Zr-Fab C4 and 89Zr-IgG C4 (H310A/H435Q) were rapidly eliminated compared with 89Zr-IgG C4. Consequently, maximal tumor-to-muscle ratios were obtained earlier, at 4 h after injection for 89Zr-Fab C4 (ratio, ∼6) and 24 h after injection for 89Zr-IgG C4 (H310A/H435Q) (ratio, ∼9), versus 48 h after injection for 89Zr-IgG C4 (ratio, ∼8). Background activity in nontumor tissues was low, except for high kidney retention of 89Zr-Fab C4 and persistent liver accumulation of 89Zr-IgG C4 (H310A/H435Q) compared with 89Zr-IgG C4. Dosimetry estimates suggested that the C4 radioligands would yield organ-absorbed doses tolerable for repeated clinical PET imaging studies. Conclusion: This study highlights the potential of designing radioligands with shorter pharmacokinetics for PD-L1 immuno-PET imaging in a preclinical model and encourages further clinical translation of such radioligands.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoglobulina G , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Zircônio
9.
Epilepsy Res ; 178: 106819, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847426

RESUMO

PURPOSE: Hybrid PET/MR is a promising tool in focal drug-resistant epilepsy, however the additional value for the detection of epileptogenic lesions and surgical decision-making remains to be established. METHODS: We retrospectively compared 18F-FDG PET/MR images with those obtained by a previous 18F-FDG PET co-registered with MRI (PET+MR) in 25 consecutive patients (16 females, 13-60 years) investigated for focal drug-resistant epilepsy. Visual analysis was performed by two readers blinded from imaging modalities, asked to assess the technical characteristics (co-registration, quality of images), the confidence in results, the location of PET abnormalities and the presence of a structural lesion on MRI. Clinical impact on surgical strategy and outcome was assessed independently. RESULTS: The location of epileptic focus was temporal in 9 patients and extra-temporal in 16 others. MRI was initially considered negative in 21 patients. PET stand-alone demonstrated metabolic abnormalities in 19 cases (76%), and the co-registration with MRI allowed the detection of 4 additional structural lesions. Compared to PET+MR, the PET/MR sensitivity was increased by 13% and new structural lesions (mainly focal cortical dysplasias) were detected in 6 patients (24%). Change of surgical decision-making was substantial for 10 patients (40%), consisting in avoiding invasive monitoring in 6 patients and modifying the planning in 4 others. Seizure-free outcome (follow-up>1 year) was obtained in 12/14 patients who underwent a cortical resection. CONCLUSION: Hybrid PET/MR may improve the detection of epileptogenic lesions, allowing to optimize the presurgical work-up and to increase the proportion of successful surgery even in the more complex cases.


Assuntos
Epilepsias Parciais , Fluordesoxiglucose F18 , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos
10.
Clin Nucl Med ; 46(9): e440-e447, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374682

RESUMO

INTRODUCTION: The aim of this study was to study the feasibility of a fully integrated multiparametric imaging framework to characterize non-small cell lung cancer (NSCLC) at 3-T PET/MRI. PATIENTS AND METHODS: An 18F-FDG PET/MRI multiparametric imaging framework was developed and prospectively applied to 11 biopsy-proven NSCLC patients. For each tumor, 12 parametric maps were generated, including PET full kinetic modeling, apparent diffusion coefficient, T1/T2 relaxation times, and DCE full kinetic modeling. Gaussian mixture model-based clustering was applied at the whole data set level to define supervoxels of similar multidimensional PET/MRI behaviors. Taking the multidimensional voxel behaviors as input and the supervoxel class as output, machine learning procedure was finally trained and validated voxelwise to reveal the dominant PET/MRI characteristics of these supervoxels at the whole data set and individual tumor levels. RESULTS: The Gaussian mixture model-based clustering clustering applied at the whole data set level (17,316 voxels) found 3 main multidimensional behaviors underpinned by the 12 PET/MRI quantitative parameters. Four dominant PET/MRI parameters of clinical relevance (PET: k2, k3 and DCE: ve, vp) predicted the overall supervoxel behavior with 97% of accuracy (SD, 0.7; 10-fold cross-validation). At the individual tumor level, these dimensionality-reduced supervoxel maps showed mean discrepancy of 16.7% compared with the original ones. CONCLUSIONS: One-stop-shop PET/MRI multiparametric quantitative analysis of NSCLC is clinically feasible. Both PET and MRI parameters are useful to characterize the behavior of tumors at the supervoxel level. In the era of precision medicine, the full capabilities of PET/MRI would give further insight of the characterization of NSCLC behavior, opening new avenues toward image-based personalized medicine in this field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
11.
Neuroscience ; 474: 80-93, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091465

RESUMO

Hybridization of positron emission tomography (PET) with other functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) or functional ultrasound (fUS) still raises technical and methodological challenges. Beyond the co-registration of anatomical images with functional data, development of hybrid imaging systems has paved the way for a large field of research based on the concept of bimodal functional neuroimaging such as PET/fMRI. In this framework, comparison of respective performances of brain PET and fUS suggests complementarity and great potential of hybrid PET/fUS for preclinical neuroimaging. Hybridization of functional neuroimaging techniques first offers opportunities to validate or improve measurement made by each modality. Future research may propose and validate hybrid parameters that quantitatively connect the brain molecular environment and the neuro-vascular coupling, which may improve our understanding of brain function in health and disease, with perspectives in neuroscience and neuropharmacology. In the coming years, cross-fertilization of neuroimaging communities and training of young researchers on multiple imaging modalities may foster the development of hybrid neuroimaging protocols that will take the full potential and the limitations of each modality into account.


Assuntos
Neuroimagem , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Multimodal
12.
Pharmacol Ther ; 222: 107786, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33307142

RESUMO

Despite the remarkable clinical successes of immune checkpoint inhibitors (ICIs) in various advanced cancers, response is still limited to a subset of patients that generally exhibit tumoral expression of immune checkpoint (IC) proteins. Development of biomarkers assessing the expression of such ICs is therefore a major challenge nowadays to refine patient selection and improve therapeutic benefits. Positron emission tomography (PET) imaging using IC-targeted radiolabeled monoclonal antibodies (immunoPET) provides a non-invasive and whole-body visualization of in vivo IC biodistribution. As such, PET imaging of ICs may serve as a robust biomarker to predict and monitor responses to ICIs, complementing the existing immunohistochemical techniques. Besides monoclonal antibodies, other PET radioligand formats, ranging from antibody-derived fragments to small proteins, have gained increasing interest owing to their faster pharmacokinetics and enhanced imaging characteristics. We provide an overview of the various strategies investigated so far for PET imaging of ICs in preclinical and clinical studies, emphasizing their benefits and limitations. Moreover, we discuss various parameters to consider for designing optimized and best-suited PET radioligands.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Neoplasias/diagnóstico por imagem
13.
EJNMMI Res ; 10(1): 88, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32734484

RESUMO

OBJECTIVES: To decipher the correlations between PET and DCE kinetic parameters in non-small-cell lung cancer (NSCLC), by using voxel-wise analysis of dynamic simultaneous [18F]FDG PET-MRI. MATERIAL AND METHODS: Fourteen treatment-naïve patients with biopsy-proven NSCLC prospectively underwent a 1-h dynamic [18F]FDG thoracic PET-MRI scan including DCE. The PET and DCE data were normalized to their corresponding T1-weighted MR morphological space, and tumors were masked semi-automatically. Voxel-wise parametric maps of PET and DCE kinetic parameters were computed by fitting the dynamic PET and DCE tumor data to the Sokoloff and Extended Tofts models respectively, by using in-house developed procedures. Curve-fitting errors were assessed by computing the relative root mean square error (rRMSE) of the estimated PET and DCE signals at the voxel level. For each tumor, Spearman correlation coefficients (rs) between all the pairs of PET and DCE kinetic parameters were estimated on a voxel-wise basis, along with their respective bootstrapped 95% confidence intervals (n = 1000 iterations). RESULTS: Curve-fitting metrics provided fit errors under 20% for almost 90% of the PET voxels (median rRMSE = 10.3, interquartile ranges IQR = 8.1; 14.3), whereas 73.3% of the DCE voxels showed fit errors under 45% (median rRMSE = 31.8%, IQR = 22.4; 46.6). The PET-PET, DCE-DCE, and PET-DCE voxel-wise correlations varied according to individual tumor behaviors. Beyond this wide variability, the PET-PET and DCE-DCE correlations were mainly high (absolute rs values > 0.7), whereas the PET-DCE correlations were mainly low to moderate (absolute rs values < 0.7). Half the tumors showed a hypometabolism with low perfused/vascularized profile, a hallmark of hypoxia, and tumor aggressiveness. CONCLUSION: A dynamic "one-stop shop" procedure applied to NSCLC is technically feasible in clinical practice. PET and DCE kinetic parameters assessed simultaneously are not highly correlated in NSCLC, and these correlations showed a wide variability among tumors and patients. These results tend to suggest that PET and DCE kinetic parameters might provide complementary information. In the future, this might make PET-MRI a unique tool to characterize the individual tumor biological behavior in NSCLC.

14.
Radiology ; 295(3): 692-700, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32208099

RESUMO

Background PET/MRI has drawn increasing interest in thoracic oncology due to the simultaneous acquisition of PET and MRI data. Geometric distortions related to diffusion-weighted imaging (DWI) limit the evaluation of voxelwise multimodal analyses. Purpose To assess the effectiveness of reverse phase encoding in correcting DWI geometric distortion for multimodal PET/MRI voxelwise lung tumor analyses. Materials and Methods In this prospective study, reverse phase encoding method was implemented with 3.0-T PET/MRI to correct geometric distortions related to DWI. The method was validated in dedicated phantom and then applied to 12 consecutive patients (mean age, 66 years ± 13 [standard deviation]; 10 men) suspected of having lung cancer who underwent fluorodeoxyglucose PET/MRI between October 2018 and April 2019. The effects on DWI-related image matching and apparent diffusion coefficient (ADC) regional map computation were assessed. Consequences on multimodal PET/MRI voxelwise lung tumor analyses were evaluated. Spearman correlation coefficients (rs) between the standardized uptake value (SUV) and ADC data corrected for distortion were computed from optimal realigned DWI PET data, along with bootstrap confidence intervals. Results Phantom results showed that in highly distorted areas, correcting the distortion significantly reduced the mean error against the ground truth (-25% ± 10.6 to -18.4% ± 12.6; P < .001) and the number of voxels with more than 20% error (from 85.3% to 31.4%). In the 12 patients, the coregistration of multimodal PET/MRI tumor data was improved by using the reverse phase encoding method (0.4%-44%). In all tumors, voxelwise correlations (rs) between ADC and SUV revealed null or weak monotonic relationships (mean rs of 0.016 ± 0.24 with none above 0.5). Conclusion Reverse phase encoding is a simple-to-implement method for improved diffusion-weighted multimodal PET/MRI voxelwise-matched analyses in lung cancer. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Colletti in this issue.


Assuntos
Artefatos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos
15.
Eur J Nucl Med Mol Imaging ; 45(8): 1465, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704039

RESUMO

The original version of this article has added numbers in the text which are unnecessary. Correct line should be: "We also performed PET/MRI based surgical resections in an increasing number of MRI negative/ doubtful cases with favourable outcome."

16.
Radiology ; 288(1): 277-284, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29613842

RESUMO

Purpose To assess the performance of the ITK-SNAP software for fluorodeoxyglucose (FDG) positron emission tomography (PET) segmentation of complex-shaped lung tumors compared with an optimized, expert-based manual reference standard. Materials and Methods Seventy-six FDG PET images of thoracic lesions were retrospectively segmented by using ITK-SNAP software. Each tumor was manually segmented by six raters to generate an optimized reference standard by using the simultaneous truth and performance level estimate algorithm. Four raters segmented 76 FDG PET images of lung tumors twice by using ITK-SNAP active contour algorithm. Accuracy of ITK-SNAP procedure was assessed by using Dice coefficient and Hausdorff metric. Interrater and intrarater reliability were estimated by using intraclass correlation coefficients of output volumes. Finally, the ITK-SNAP procedure was compared with currently recommended PET tumor delineation methods on the basis of thresholding at 41% volume of interest (VOI; VOI41) and 50% VOI (VOI50) of the tumor's maximal metabolism intensity. Results Accuracy estimates for the ITK-SNAP procedure indicated a Dice coefficient of 0.83 (95% confidence interval: 0.77, 0.89) and a Hausdorff distance of 12.6 mm (95% confidence interval: 9.82, 15.32). Interrater reliability was an intraclass correlation coefficient of 0.94 (95% confidence interval: 0.91, 0.96). The intrarater reliabilities were intraclass correlation coefficients above 0.97. Finally, VOI41 and VOI50 accuracy metrics were as follows: Dice coefficient, 0.48 (95% confidence interval: 0.44, 0.51) and 0.34 (95% confidence interval: 0.30, 0.38), respectively, and Hausdorff distance, 25.6 mm (95% confidence interval: 21.7, 31.4) and 31.3 mm (95% confidence interval: 26.8, 38.4), respectively. Conclusion ITK-SNAP is accurate and reliable for active-contour-based segmentation of heterogeneous thoracic PET tumors. ITK-SNAP surpassed the recommended PET methods compared with ground truth manual segmentation.


Assuntos
Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Algoritmos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Software
17.
Eur J Nucl Med Mol Imaging ; 45(8): 1449-1460, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29594410

RESUMO

PURPOSE: To assess the localizing value of 18F-FDG PET in patients operated on for drug-resistant epilepsy due to focal cortical dysplasia type 2 (FCD2). METHODS: We analysed 18F-FDG PET scans from 103 consecutive patients (52 males, 7-65 years old) with histologically proven FCD2. PET and MRI data were first reviewed by visual analysis blinded to clinical information and FCD2 location. The additional value of electroclinical data and PET/MRI coregistration was assessed by comparison with pathological results and surgical outcomes. RESULTS: Visual analysis of PET scans showed focal or regional hypometabolism corresponding to the FCD2 in 45 patients (44%), but the findings were doubtful or misleading in 37 patients and negative in 21. When considering electroclinical data, positive localization was obtained in 73 patients, and this increased to 85 (83%) after coregistration of PET and MRI data. Under the same conditions, MRI was positive in 61 patients (59%), doubtful in 15 and negative in 27. The additional value of PET was predominant in patients negative or doubtful on MRI, localizing the FCD2 in 35 patients (83%). Interobserver agreement correlated with the grade of hypometabolism: it was good in patients with mild to severe hypometabolism (82-95%), but moderate in those with subtle/doubtful hypometabolism (45%). The main factors influencing positive PET localization were the grade of hypometabolism and the size of the FCD2 (P < 0.0001). Misleading location (nine patients) was associated with a small FCD2 in the mesial frontal and central regions. Following limited cortical resection mainly located in extratemporal areas (mean follow-up 5.6 years), a seizure-free outcome was achieved in 94% of patients, including Engel's class IA in 72%. CONCLUSION: In this series, 18F-FDG PET contributed to the localization of FCD2 in 83% of patients. This high localizing value was obtained by integration of electroclinical data and PET/MRI coregistration. This approach may help improve the surgical outcome in extratemporal epilepsy, even in patients negative on MRI.


Assuntos
Eletroencefalografia , Epilepsia/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Idoso , Criança , Feminino , Fluordesoxiglucose F18 , França , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Neuroimage Clin ; 17: 804-810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29276677

RESUMO

Mild cognitive impairment and Alzheimer's dementia involve a grey matter disease, quantifiable by 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), but also white matter damage, evidenced by diffusion tensor magnetic resonance imaging (DTI), which may play an additional pathogenic role. This study aimed to determine whether such DTI and PET variations are also interrelated in a high-risk population of older hypertensive patients with only subjective memory complaints (SMC). Sixty older hypertensive patients (75 ± 5 years) with SMC were referred to DTI and FDG-PET brain imaging, executive and memory tests, as well as peripheral and central blood pressure (BP) measurements. Mean apparent diffusion coefficient (ADCmean) was determined in overall white matter and correlated with the grey matter distribution of the metabolic rate of glucose (CMRGlc) using whole-brain voxel-based analyses of FDG-PET images. ADCmean was variable between individuals, ranging from 0.82 to 1.01.10- 3 mm2 sec- 1, and mainly in relation with CMRGlc of areas involved in Alzheimer's disease such as internal temporal areas, posterior associative junctions, posterior cingulum but also insulo-opercular areas (global correlation coefficient: - 0.577, p < 0.001). Both the ADCmean and CMRGlc of the interrelated grey matter areas were additionally and concordantly linked to the results of executive and memory tests and to systolic central BP (all p < 0.05). Altogether, our findings show that cross-sectional variations in overall white brain matter are linked to the metabolism of Alzheimer-like cortical areas and to cognitive performance in older hypertensive patients with only subjective memory complaints. Additional relationships with central BP strengthen the hypothesis of a contributing pathogenic role of hypertension.


Assuntos
Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Hipertensão/complicações , Transtornos da Memória/etiologia , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea/fisiologia , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Imageamento Tridimensional , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
19.
Nat Commun ; 8(1): 1268, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097653

RESUMO

Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.


Assuntos
Transfusão de Sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Reação Transfusional , Animais , Doenças Assintomáticas , Doadores de Sangue , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Doenças Priônicas/classificação , Doenças Priônicas/metabolismo , Doenças Priônicas/transmissão , Proteínas Priônicas/metabolismo
20.
EJNMMI Phys ; 4(1): 16, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28466279

RESUMO

BACKGROUND: The correction of γ-photon attenuation in PET-MRI remains a critical issue, especially for bone attenuation. This problem is of great importance for brain studies due to the density of the skull. Current techniques for skull attenuation correction (AC) provide indirect estimates of cortical bone density, leading to inaccurate estimates of brain activity. The purpose of this study was to develop an alternate method for bone attenuation correction based on NMR. The proposed approach relies on the detection of hydroxyapatite crystals by zero echo time (ZTE) MRI of 31P, providing individual and quantitative assessment of bone density. This work presents a proof of concept of this approach. The first step of the method is a calibration experiment to determine the conversion relationship between the 31P signal and the linear attenuation coefficient µ. Then 31P-ZTE was performed in vivo in rodent to estimate the µ-map of the skull. 18F-FDG PET data were acquired in the same animal and reconstructed with three different AC methods: 31P-based AC, AC neglecting the bone and the gold standard, CT-based AC, used to comparison for the other two methods. RESULTS: The calibration experiment provided a conversion factor of 31P signal into µ. In vivo 31P-ZTE made it possible to acquire 3D images of the rat skull. Brain PET images showed underestimation of 18F activity in peripheral regions close to the skull when AC neglected the bone (as compared with CT-based AC). The use of 31P-derived µ-map for AC leads to increased peripheral activity, and therefore a global overestimation of brain 18F activity. CONCLUSIONS: In vivo 31P-ZTE MRI of hydroxyapatite provides µ-map of the skull, which can be used for attenuation correction of 18F-FDG PET images. This study is limited by several intrinsic biases associated with the size of the rat brain, which are unlikely to affect human data on a clinical PET-MRI system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...