Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365841

RESUMO

Dopamine neurons switch from tonic pacemaker activity to high-frequency bursts in response to salient stimuli. These bursts lead to superlinear increases in dopamine release, and the degree of this increase is highly dependent on firing frequency. The superlinearity and frequency dependence of dopamine release implicate short-term plasticity processes. The presynaptic Ca2+-sensor synaptotagmin-7 (SYT7) has suitable properties to mediate such short-term plasticity and has been implicated in regulating dopamine release from somatodendritic compartments. Here, we use a genetically encoded dopamine sensor and whole-cell electrophysiology in Syt7 KO mice to determine how SYT7 contributes to both axonal and somatodendritic dopamine release. We find that SYT7 mediates a hidden component of facilitation of release from dopamine terminals that can be unmasked by lowering initial release probability or by predepressing synapses with low-frequency stimulation. Depletion of SYT7 increased short-term depression and reduced release during stimulations that mimic in vivo firing. Recordings of D2-mediated inhibitory postsynaptic currents in the substantia nigra pars compacta (SNc) confirmed a similar role for SYT7 in somatodendritic release. Our results indicate that SYT7 drives short-term facilitation of dopamine release, which may explain the frequency dependence of dopamine signaling seen in vivo.


Assuntos
Depressão , Dopamina , Animais , Camundongos , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Sinapses/metabolismo , Sinaptotagminas
2.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064513

RESUMO

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Assuntos
Epilepsia , Fibras Musgosas Hipocampais , Receptores de Dopamina D2 , Animais , Camundongos , Giro Denteado/metabolismo , Dopamina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ansiedade/genética , Ansiedade/metabolismo
3.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205586

RESUMO

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. Expression from the dopamine D2 receptor (D2R) gene (Drd2) promoter is a defining feature of MCs, and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well-known. Surprisingly, though, the function of MC D2Rs remain largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells. D2R activation by exogenous and endogenous dopamine reduced MC to dentate granule cells (GC) synaptic transmission, most likely by a presynaptic mechanism. In contrast, removing Drd2 from MCs had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.

4.
Cell Rep ; 42(1): 111915, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640316

RESUMO

Modes of somatodendritic transmission range from rapid synaptic signaling to protracted regulation over distance. Somatodendritic dopamine secretion in the midbrain leads to D2 receptor-induced modulation of dopamine neurons on the timescale of seconds. Temporally imprecise release mechanisms are often presumed to be at play, and previous work indeed suggested roles for slow Ca2+ sensors. We here use mouse genetics and whole-cell electrophysiology to establish that the fast Ca2+ sensor synaptotagmin-1 (Syt-1) is important for somatodendritic dopamine release. Syt-1 ablation from dopamine neurons strongly reduces stimulus-evoked D2 receptor-mediated inhibitory postsynaptic currents (D2-IPSCs) in the midbrain. D2-IPSCs evoked by paired stimuli exhibit less depression, and high-frequency trains restore dopamine release. Spontaneous somatodendritic dopamine secretion is independent of Syt-1, supporting that its exocytotic mechanisms differ from evoked release. We conclude that somatodendritic dopamine transmission relies on the fast Ca2+ sensor Syt-1, leading to synchronous release in response to the initial stimulus.


Assuntos
Dopamina , Transmissão Sináptica , Animais , Camundongos , Transmissão Sináptica/fisiologia , Comunicação Celular , Exocitose/fisiologia , Neurônios Dopaminérgicos , Cálcio
5.
Mol Pharmacol ; 103(3): 188-198, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456191

RESUMO

A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. That allelic variant D2-I212F is a constitutively active and G protein-biased receptor. We now describe mice engineered using CRISPR-Cas9-mediated gene editing technology to carry the D2-I212F variant. Drd2I212F mice exhibited gait abnormalities resembling those in other mouse models of chorea and/or dystonia and had striatal D2 receptor expression that was decreased approximately 30% per Drd2I212F allele. Electrically evoked inhibitory postsynaptic conductances in midbrain dopamine neurons and striatum from Drd2I212F mice, caused by G protein activation of potassium channels, exhibited slow kinetics (e.g., approximately four- to sixfold slower decay) compared with Drd2 +/+ mice. Current decay initiated by photolytic release of the D2 antagonist sulpiride from CyHQ-sulpiride was also ∼fourfold slower in midbrain slices from Drd2I212F mice than Drd2 +/+ mice. Furthermore, in contrast to Drd2 +/+ mice, in which dopamine is several-fold more potent at neurons in the nucleus accumbens than in the dorsal striatum, reflecting activation of Gα o versus Gα i, dopamine had similar potencies in those two brain regions of Drd2I212F mice. Repeated cocaine treatment, which decreases dopamine potency in the nucleus accumbens of Drd2 +/+ mice, had no effect on dopamine potency in Drd2 I212F mice. The results demonstrate the pathogenicity of the D2-I212F mutation and the utility of this mouse model for investigating the role of pathogenic DRD2 variants in early-onset hyperkinetic movement disorders. SIGNIFICANCE STATEMENT: The first dopamine receptor mutation to cause a movement disorder, D2-I212F, was recently identified. The mutation makes receptor activation of G protein-mediated signaling more efficient. To confirm the pathogenesis of D2-I212F, this study reports that mice carrying this mutation have gait abnormalities consistent with the clinical phenotype. The mutation also profoundly alters D2 receptor expression and function in vivo. This mouse model will be useful for further characterization of the mutant receptor and for evaluation of potential therapeutic drugs.


Assuntos
Dopamina , Transtornos dos Movimentos , Receptores de Dopamina D2 , Animais , Humanos , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Marcha/genética , Hipercinese , Mutação , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sulpirida
6.
Soft Matter ; 18(45): 8554-8560, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350122

RESUMO

In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.

7.
Mol Pharmacol ; 101(5): 300-308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193934

RESUMO

Chronic treatment of animals with morphine results in a long lasting cellular tolerance in the locus coeruleus and alters the kinase dependent desensitization of opioid and nonopioid G protein-coupled receptors (GPCRs). This study examined the development of tolerance and altered regulation of kinase activity after chronic treatment of animals with clinically relevant opioids that differ in efficacy at the µ-opioid receptors (MOR). In slices from oxycodone treated animals, no tolerance to opioids was observed when measuring the MOR induced increase in potassium conductance, but the G protein receptor kinase 2/3 blocker, compound 101, no longer inhibited desensitization of somatostatin (SST) receptors. Chronic fentanyl treatment induced a rightward shift in the concentration response to [Met5]enkephalin, but there was no change in the kinase regulation of desensitization of the SST receptor. When total phosphorylation deficient MORs that block desensitization, internalization, and tolerance were virally expressed, chronic treatment with fentanyl resulted in the altered kinase regulation of SST receptors. The results suggest that sustained opioid receptor signaling initiates the process that results in altered kinase regulation of not only opioid receptors, but also other GPCRs. This study highlights two very distinct downstream adaptive processes that are specifically regulated by an agonist dependent mechanism. SIGNIFICANCE STATEMENT: Persistent signaling of MORs results in altered kinase regulation of nonopioid GPCRs after chronic treatment with morphine and oxycodone. Profound tolerance develops after chronic treatment with fentanyl without affecting kinase regulation. The homeostatic change in the kinase regulation of nonopioid GPCRs could account for the systems level in vivo development of tolerance that is seen with opioid agonists, such as morphine and oxycodone, that develop more rapidly than the tolerance induced by efficacious agonists, such as fentanyl and etorphine.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/farmacologia , Animais , Fentanila/farmacologia , Morfina/farmacologia , Oxicodona/farmacologia , Receptores Opioides , Receptores Opioides mu/metabolismo
8.
Brain Struct Funct ; 227(3): 925-941, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34854963

RESUMO

G-protein-coupled D2 autoreceptors expressed on dopamine neurons (D2Rs) inhibit transmitter release and cell firing at axonal endings and somatodendritic compartments. Mechanistic details of somatodendritic dopamine release remain unresolved, partly due to insufficient information on the subcellular distribution of D2Rs. Previous studies localizing D2Rs have been hindered by a dearth of antibodies validated for specificity in D2R knockout animals and have been limited by the small sampling areas imaged by electron microscopy. This study utilized sub-diffraction fluorescence microscopy and electron microscopy to examine D2 receptors in a superecliptic pHlourin GFP (SEP) epitope-tagged D2 receptor knockin mouse. Incubating live slices with an anti-SEP antibody achieved the selective labeling of plasma membrane-associated receptors for immunofluorescent imaging over a large area of the substantia nigra pars compacta (SNc). SEP-D2Rs appeared as puncta-like structures along the surface of dendrites and soma of dopamine neurons visualized by antibodies to tyrosine hydroxylase (TH). TH-associated SEP-D2Rs displayed a cell surface density of 0.66 puncta/µm2, which corresponds to an average frequency of 1 punctum every 1.50 µm. Separate ultrastructural experiments using silver-enhanced immunogold revealed that membrane-bound particles represented 28% of total D2Rs in putative dopamine cells within the SNc. Structures immediately adjacent to dendritic membrane gold particles were unmyelinated axons or axon varicosities (40%), astrocytes (19%), other dendrites (7%), or profiles unidentified (34%) in single sections. Some apposed profiles also expressed D2Rs. Fluorescent and ultrastructural analyses also provided the first visualization of membrane D2Rs at the axon initial segment, a compartment critical for action potential generation. The punctate appearance of anti-SEP staining indicates there is a population of D2Rs organized in discrete signaling sites along the plasma membrane, and for the first time, a quantitative estimate of spatial frequency is provided.


Assuntos
Receptores de Dopamina D2/metabolismo , Substância Negra , Animais , Autorreceptores/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Receptores de Dopamina D2/análise , Substância Negra/metabolismo
9.
NPJ Parkinsons Dis ; 7(1): 76, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408150

RESUMO

Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.

10.
Diabetes ; 70(8): 1885-1897, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34035041

RESUMO

Type 1 diabetes (T1D) has a multifactorial autoimmune etiology, involving environmental prompts and polygenic predisposition. We hypothesized that pancreata from individuals with and at risk for T1D would exhibit dysregulated expression of genes associated with monogenic forms of diabetes caused by nonredundant single-gene mutations. Using a "monogenetic transcriptomic strategy," we measured the expression of these genes in human T1D, autoantibody-positive (autoantibody+), and control pancreas tissues with real-time quantitative PCR in accordance with the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Gene and protein expression was visualized in situ with use of immunofluorescence, RNAscope, and confocal microscopy. Two dozen monogenic diabetes genes showed altered expression in human pancreata from individuals with T1D versus unaffected control subjects. Six of these genes also saw dysregulation in pancreata from autoantibody+ individuals at increased risk for T1D. As a subset of these genes are related to cellular stress responses, we measured integrated stress response (ISR) genes and identified 20 with altered expression in T1D pancreata, including three of the four eIF2α-dependent kinases. Equally intriguing, we observed significant repression of the three arms of the ISR in autoantibody+ pancreata. Collectively, these efforts suggest monogenic diabetes and ISR genes are dysregulated early in the T1D disease process and likely contribute to the disorder's pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica , Pâncreas/metabolismo , Transcriptoma , Autoanticorpos , Humanos , Mutação , Estudos Retrospectivos
11.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915983

RESUMO

Histone deacetylase 6 (HDAC6) is an emerging therapeutic target that is overexpressed in glioblastoma when compared to other HDACs. HDAC6 catalyzes the deacetylation of alpha-tubulin and mediates the disassembly of primary cilia, a process required for cell cycle progression. HDAC6 inhibition disrupts glioma proliferation, but whether this effect is dependent on tumor cell primary cilia is unknown. We found that HDAC6 inhibitors ACY-1215 (1215) and ACY-738 (738) inhibited the proliferation of multiple patient-derived and mouse glioma cells. While both inhibitors triggered rapid increases in acetylated alpha-tubulin (aaTub) in the cytosol and led to increased frequencies of primary cilia, they unexpectedly reduced the levels of aaTub in the cilia. To test whether the antiproliferative effects of HDAC6 inhibitors are dependent on tumor cell cilia, we generated patient-derived glioma lines devoid of cilia through depletion of ciliogenesis genes ARL13B or KIF3A. At low concentrations, 1215 or 738 did not decrease the proliferation of cilia-depleted cells. Moreover, the differentiation of glioma cells that was induced by HDAC6 inhibition did not occur after the inhibition of cilia formation. These data suggest HDAC6 signaling at primary cilia promotes the proliferation of glioma cells by restricting their ability to differentiate. Surprisingly, overexpressing HDAC6 did not reduce cilia length or the frequency of ciliated glioma cells, suggesting other factors are required to control HDAC6-mediated cilia disassembly in glioma cells. Collectively, our findings suggest that HDAC6 promotes the proliferation of glioma cells through primary cilia.

12.
Sci Rep ; 11(1): 1422, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446840

RESUMO

Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Metanfetamina/toxicidade , Prolina/biossíntese , Doença Aguda , Aldeído Desidrogenase/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Masculino , Camundongos , Neurônios/metabolismo
13.
J Neurosci ; 40(30): 5871-5891, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32576620

RESUMO

Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
14.
Neurobiol Dis ; 134: 104633, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698055

RESUMO

Despite comprising only ~ 0.001% of all neurons in the human brain, ventral midbrain dopamine neurons exert a profound influence on human behavior and cognition. As a neuromodulator, dopamine selectively inhibits or enhances synaptic signaling to coordinate neural output for action, attention, and affect. Humans invariably lose brain dopamine during aging, and this can be exacerbated in disease states such as Parkinson's Disease. Further, it is well established in multiple disease states that cell loss is selective for a subset of highly sensitive neurons within the nigrostriatal dopamine tract. Regional differences in dopamine tone are regulated pre-synaptically, with subcircuits of projecting dopamine neurons exhibiting distinct molecular and physiological signatures. Specifically, proteins at dopamine release sites that synthesize and package cytosolic dopamine, modulate its release and reuptake, and alter neuronal excitability show regional differences that provide linkages to the observed sensitivity to neurodegeneration. The aim of this review is to outline the major components of dopamine homeostasis at neurotransmitter release sites and describe the regional differences most relevant to understanding why some, but not all, dopamine neurons exhibit heightened vulnerability to neurodegeneration.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Envelhecimento/metabolismo , Humanos
15.
PLoS One ; 14(9): e0222957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536584

RESUMO

The ventral midbrain supports a variety of functions through the heterogeneity of neurons. Dopaminergic and GABA neurons within this region are particularly susceptible targets of amphetamine-class psychostimulants such as methamphetamine. While this has been evidenced through single-neuron methods, it remains unclear whether and to what extent the local neuronal network is affected and if so, by which mechanisms. Both GABAergic and dopaminergic neurons were heavily featured within the primary ventral midbrain network model system. Using spontaneous calcium activity, our data suggest methamphetamine decreased total network output via a D2 receptor-dependent manner. Over culture duration, functional connectivity between neurons decreased significantly but was unaffected by methamphetamine. However, across culture duration, exposure to methamphetamine significantly altered changes in network assortativity. Here we have established primary ventral midbrain networks culture as a viable model system that reveals specific changes in network activity, connectivity, and topology modulation by methamphetamine. This network culture system enables control over the type and number of neurons that comprise a network and facilitates detection of emergent properties that arise from the specific organization. Thus, the multidimensional properties of methamphetamine can be unraveled, leading to a better understanding of its impact on the local network structure and function.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Metanfetamina/farmacologia , Rede Nervosa/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neuroimagem/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia
16.
J Biol Chem ; 294(17): 6957-6971, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30824538

RESUMO

The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endocitose , Canais de Potássio Shab/metabolismo , Animais , Dopamina/metabolismo , Feminino , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Hypertension ; 71(6): 1156-1163, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29712738

RESUMO

Pulmonary hypertension (PH) is a devastating disease and its successful treatment remains to be accomplished despite recent advances in pharmacotherapy. It has been proposed that PH be considered as a systemic disease, rather than primarily a disease of the pulmonary vasculature. Consequently, an investigation of the intricate interplay between multiple organs such as brain, vasculature, and lung in PH could lead to the identification of new targets for its therapy. However, little is known about this interplay. This study was undertaken to examine the concept that altered autonomic-pulmonary communication is important in PH pathophysiology. Therefore, we hypothesize that activation of microglial cells in the paraventricular nucleus of hypothalamus and neuroinflammation is associated with increased sympathetic drive and pulmonary pathophysiology contributing to PH. We utilized the monocrotaline rat model for PH and intracerebroventricular administration of minocycline for inhibition of microglial cells activation to investigate this hypothesis. Hemodynamic, echocardiographic, histological, immunohistochemical, and confocal microscopic techniques assessed cardiac and pulmonary function and microglial cells. Monocrotaline treatment caused cardiac and pulmonary pathophysiology associated with PH. There were also increased activated microglial cells and mRNA for proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNF [tumor necrosis factor]-α) in the paraventricular nucleus. Furthermore, increased sympathetic drive and plasma norepinephrine were observed in rats with PH. Intracerebroventricular infusion of minocycline inhibited all these parameters and significantly attenuated PH. These observations implicate a dysfunctional autonomic-lung communication in the development and progression of PH providing new therapeutic targets, such as neuroinflammation, for PH therapy.


Assuntos
Citocinas/metabolismo , Hipertensão Pulmonar/fisiopatologia , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão Propulsora Pulmonar/fisiologia , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico , Masculino , Microglia/patologia , Monocrotalina/toxicidade , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Sprague-Dawley
18.
Pharmacol Ther ; 186: 152-167, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29360540

RESUMO

Methamphetamine (METH) abuse is a major public health issue around the world, yet there are currently no effective pharmacotherapies for the treatment of METH addiction. METH is a potent psychostimulant that increases extracellular dopamine levels by targeting the dopamine transporter (DAT) and alters neuronal activity in the reward centers of the brain. One promising therapeutic target for the treatment of METH addiction is the sigma-1 receptor (σ1R). The σ1R is an endoplasmic reticulum-localized chaperone protein that is activated by cellular stress, and, unique to this chaperone, its function can also be induced or inhibited by different ligands. Upon activation of this unique "chaperone receptor", the σ1R regulates a variety of cellular functions and possesses neuroprotective activity in the brain. Interestingly, a variety of σ1R ligands modulate dopamine neurotransmission and reduce the behavioral effects of METH in animal models of addictive behavior, suggesting that the σ1R may be a viable therapeutic target for the treatment of METH addiction. In this review, we provide background on METH and the σ1R as well as a literature review regarding the role of σ1Rs in modulating both dopamine neurotransmission and the effects of METH. We aim to highlight the complexities of σ1R pharmacology and function as well as the therapeutic potential of the σ1R as a target for the treatment of METH addiction.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Dopamina/metabolismo , Metanfetamina , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Animais , Comportamento Aditivo/tratamento farmacológico , Humanos , Ligantes , Metanfetamina/toxicidade , Terapia de Alvo Molecular , Transmissão Sináptica/efeitos dos fármacos , Receptor Sigma-1
19.
Nat Commun ; 8(1): 2228, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263318

RESUMO

Dopamine neurotransmission is highly dysregulated by the psychostimulant methamphetamine, a substrate for the dopamine transporter (DAT). Through interactions with DAT, methamphetamine increases extracellular dopamine levels in the brain, leading to its rewarding and addictive properties. Methamphetamine also interacts with the sigma-1 receptor (σ1R), an inter-organelle signaling modulator. Using complementary strategies, we identified a novel mechanism for σ1R regulation of dopamine neurotransmission in response to methamphetamine. We found that σ1R activation prevents methamphetamine-induced, DAT-mediated increases in firing activity of dopamine neurons. In vitro and in vivo amperometric measurements revealed that σ1R activation decreases methamphetamine-stimulated dopamine efflux without affecting basal dopamine neurotransmission. Consistent with these findings, σ1R activation decreases methamphetamine-induced locomotion, motivated behavior, and enhancement of brain reward function. Notably, we revealed that the σ1R interacts with DAT at or near the plasma membrane and decreases methamphetamine-induced Ca2+ signaling, providing potential mechanisms. Broadly, these data provide evidence for σ1R regulation of dopamine neurotransmission and support the σ1R as a putative target for the treatment of methamphetamine addiction.


Assuntos
Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Metanfetamina/farmacologia , Receptores sigma/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal , Células CHO , Células Cultivadas , Cricetulus , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Locomoção , Camundongos , Camundongos Knockout , Motivação , Técnicas de Patch-Clamp , Receptores sigma/genética , Receptores sigma/metabolismo , Recompensa , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...