Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2219533120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693095

RESUMO

Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite's life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2L1, showed that the AMA1-RON2 pair induces strong protection against acute and chronic infection, while the AMA4-RON2L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA-RON complexes as potential vaccine candidates to protect against toxoplasmosis.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Toxoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Infecção Persistente , Toxoplasmose/metabolismo , Parasitos/metabolismo , Vacinação
2.
mSphere ; 7(6): e0035022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36326242

RESUMO

Toxoplasma gondii is a single-celled parasitic eukaryote that evolved to successfully propagate in any nucleated cell. As with any other eukaryote, its life cycle is regulated by signaling pathways controlled by kinases and phosphatases. T. gondii encodes an atypical bacterial-like phosphatase absent from mammalian genomes, named Shelph, after its first identification in the psychrophilic bacterium Schewanella sp. Here, we demonstrate that Toxoplasma Shelph is an active phosphatase localized in the parasite endoplasmic reticulum. The phenotyping of a shelph knockout (KO) line showed a minor impairment in invasion on human fibroblasts, while the other steps of the parasite lytic cycle were not affected. In contrast with Plasmodium ortholog Shelph1, this invasion deficiency was not correlated with any default in the biogenesis of secretory organelles. However, Shelph-KO parasites displayed a much-pronounced defect in virulence in vivo. These phenotypes could be rescued by genetic complementation, thus supporting an important function for Shelph in the context of a natural infection. IMPORTANCE Toxoplasma gondii belongs to the Apicomplexa phylum, which comprises more than 5,000 species, among which is Plasmodium falciparum, the notorious agent of human malaria. Intriguingly, the Apicomplexa genomes encode at least one phosphatase closely related to the bacterial Schewanella phosphatase, or Shelph. To better understand the importance of these atypical bacterial enzymes in eukaryotic parasites, we undertook the functional characterization of T. gondii Shelph. Our results uncovered its subcellular localization and its enzymatic activity, revealed its subtle involvement during the tachyzoite invasion step of the lytic cycle, and more importantly, highlighted a critical requirement of this phosphatase for parasite propagation in mice. Overall, this study revealed an unexpected role for T. gondii Shelph in the maintenance of parasite virulence in vivo.


Assuntos
Parasitos , Toxoplasma , Humanos , Camundongos , Animais , Toxoplasma/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Virulência , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos
3.
EMBO J ; 41(22): e111158, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36245278

RESUMO

Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.


Assuntos
Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Exocitose , Proteínas de Membrana/metabolismo , Interações Hospedeiro-Parasita
4.
Nat Microbiol ; 7(8): 1230-1238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817892

RESUMO

Apicomplexan parasites secrete contents of the rhoptries, club-shaped organelles in the apical region, into host cells to permit their invasion and establishment of infection. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is unknown whether a similar molecular machinery exists in the malaria parasite Plasmodium. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct apical vesicle docking the tips of the two rhoptries to the RSA. We also discover two additional rhoptry organizations that lack the apical vesicle. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to different rhoptry organizations. Our results highlight previously unknown steps in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.


Assuntos
Criptosporidiose , Cryptosporidium , Malária Falciparum , Tomografia com Microscopia Eletrônica , Interações Hospedeiro-Parasita , Humanos , Plasmodium falciparum , Proteínas de Protozoários/genética
5.
Annu Rev Microbiol ; 76: 619-640, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671531

RESUMO

Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates.


Assuntos
Parasitos , Toxoplasma , Animais , Interações Hospedeiro-Parasita , Organelas/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
7.
Nat Commun ; 12(1): 4983, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404783

RESUMO

Parasites of the phylum Apicomplexa cause important diseases including malaria, cryptosporidiosis and toxoplasmosis. These intracellular pathogens inject the contents of an essential organelle, the rhoptry, into host cells to facilitate invasion and infection. However, the structure and mechanism of this eukaryotic secretion system remain elusive. Here, using cryo-electron tomography and subtomogram averaging, we report the conserved architecture of the rhoptry secretion system in the invasive stages of two evolutionarily distant apicomplexans, Cryptosporidium parvum and Toxoplasma gondii. In both species, we identify helical filaments, which appear to shape and compartmentalize the rhoptries, and an apical vesicle (AV), which facilitates docking of the rhoptry tip at the parasite's apical region with the help of an elaborate ultrastructure named the rhoptry secretory apparatus (RSA); the RSA anchors the AV at the parasite plasma membrane. Depletion of T. gondii Nd9, a protein required for rhoptry secretion, disrupts the RSA ultrastructure and AV-anchoring. Moreover, T. gondii contains a line of AV-like vesicles, which interact with a pair of microtubules and accumulate towards the AV, leading to a working model for AV-reloading and discharging of multiple rhoptries. Together, our analyses provide an ultrastructural framework to understand how these important parasites deliver effectors into host cells.


Assuntos
Organelas/metabolismo , Organelas/ultraestrutura , Parasitos/metabolismo , Parasitos/ultraestrutura , Proteínas de Protozoários/química , Animais , Evolução Biológica , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Criptosporidiose , Cryptosporidium , Cryptosporidium parvum/citologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/metabolismo , Interações Hospedeiro-Parasita , Microtúbulos/ultraestrutura , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo , Toxoplasmose
8.
Front Immunol ; 12: 643292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262559

RESUMO

Toxoplasmosis is a prevalent parasitic disease caused by Toxoplasma gondii (T. gondii). Under the control of the host immune system, T. gondii persists as latent bradyzoite cysts. Immunosuppression leads to their reactivation, a potentially life-threatening condition. Interferon-gamma (IFN-γ) controls the different stages of toxoplasmosis. Here, we addressed the role of the parasite surface antigen P18, belonging to the Surface-Antigen 1 (SAG-1) Related Sequence (SRS) family, in a cyst-forming strain. Deletion of P18 gene (KO P18) impaired the invasion of parasites in macrophages and IFN-γ-mediated activation of macrophages further reduced the invasion capacity of this KO, as compared to WT strain. Mice infected by KO P18, showed a marked decrease in virulence during acute toxoplasmosis. This was consequent to less parasitemia, accompanied by a substantial recruitment of dendritic cells, macrophages and natural killer cells (NK). Furthermore, KO P18 resulted in a higher number of bradyzoite cysts, and a stronger inflammatory response. A prolonged survival of mice was observed upon immunosuppression of KO P18 infected BALB/c mice or upon oral infection of Severe Combined Immunodeficiency (SCID) mice, with intact macrophages and natural killer (NK) cells. In stark contrast, oral infection of NSG (NOD/Shi-scid/IL-2Rγnull) mice, defective in macrophages and NK cells, with KO P18, was as lethal as that of the control strain showing that the conversion from bradyzoites to tachyzoites is intact and, suggesting a role of P18 in the response to host IFN-γ. Collectively, these data demonstrate a role for P18 surface antigen in the invasion of macrophages and in the virulence of the parasite, during acute and chronic toxoplasmosis.


Assuntos
Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Toxoplasma , Toxoplasmose , Fatores de Virulência , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
9.
Trends Parasitol ; 37(7): 622-637, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34045149

RESUMO

Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.


Assuntos
Apicomplexa/fisiologia , Exocitose/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Animais , Células/parasitologia , Humanos , Organelas/metabolismo , Proteínas de Protozoários/metabolismo
10.
Nat Microbiol ; 6(4): 425-434, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495622

RESUMO

Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.


Assuntos
Alveolados/fisiologia , Organelas/metabolismo , Alveolados/classificação , Alveolados/ultraestrutura , Membrana Celular/metabolismo , Exocitose , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vesículas Secretórias/metabolismo
11.
Nat Commun ; 11(1): 3532, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669539

RESUMO

Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/enzimologia , Proteína Fosfatase 1/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Proliferação de Células , GMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Fosfatidilcolinas/química , Domínios Proteicos , Proteoma , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS Pathog ; 16(7): e1008650, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628723

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.


Assuntos
Proteínas de Protozoários/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/metabolismo , Fatores de Virulência/metabolismo , Animais , Camundongos , Fosfolipases/genética , Fosfolipases/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/enzimologia , Virulência
13.
Cell Microbiol ; 22(1): e13120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628778

RESUMO

Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.


Assuntos
Mitose/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/fisiologia , Fatores de Transcrição/genética , Núcleo Celular/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
14.
Methods Mol Biol ; 2071: 143-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31758451

RESUMO

Rhoptries are key secretory organelles for Toxoplasma gondii invasion. Here, we describe how to assess the ability of T. gondii tachyzoites to secrete their rhoptry contents in vitro.


Assuntos
Organelas/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Linhagem Celular , Fibroblastos/parasitologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
Nat Commun ; 10(1): 4041, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492901

RESUMO

Members of the Apicomplexa phylum, including Plasmodium and Toxoplasma, have two types of secretory organelles (micronemes and rhoptries) whose sequential release is essential for invasion and the intracellular lifestyle of these eukaryotes. During invasion, rhoptries inject an array of invasion and virulence factors into the cytoplasm of the host cell, but the molecular mechanism mediating rhoptry exocytosis is unknown. Here we identify a set of parasite specific proteins, termed rhoptry apical surface proteins (RASP) that cap the extremity of the rhoptry. Depletion of RASP2 results in loss of rhoptry secretion and completely blocks parasite invasion and therefore parasite proliferation in both Toxoplasma and Plasmodium. Recombinant RASP2 binds charged lipids and likely contributes to assembling the machinery that docks/primes the rhoptry to the plasma membrane prior to fusion. This study provides important mechanistic insight into a parasite specific exocytic pathway, essential for the establishment of infection.


Assuntos
Proteínas de Transporte/metabolismo , Organelas/metabolismo , Fosfolipídeos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Exocitose , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Parasitos/metabolismo , Parasitos/ultraestrutura , Fosfolipídeos/química , Proteínas de Protozoários/genética
16.
Cell Mol Life Sci ; 75(23): 4417-4443, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30051161

RESUMO

The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.


Assuntos
Segregação de Cromossomos , Cromossomos/genética , Fuso Acromático/metabolismo , Toxoplasma/genética , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Cromossomos/metabolismo , Replicação do DNA/genética , Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Microscopia Eletrônica de Transmissão , Mitose/genética , Toxoplasma/fisiologia , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologia
17.
Cell Microbiol ; 20(11): e12870, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29911335

RESUMO

Apicomplexans use the endolysosomal system for the biogenesis of their secretory organelles, namely, micronemes, rhoptries, and dense granules. In Toxoplasma gondii, our previous in silico search identified the HOPS tethering but not the CORVET complex and demonstrated a role of Vps11 (a common component for both complexes) in its secretory organelle biogenesis. Herein, we performed Vps11-GFP-Trap pull-down assays and identified by proteomic analysis, not only the CORVET-specific subunit Vps8 but also a BEACH domain-containing protein (BDCP) conserved in eukaryotes. We show that knocking-down Vps8 affects targeting of dense granule proteins, transport of rhoptry proteins, and the localization of the cathepsin L protease vacuolar compartment marker. Only a subset of micronemal proteins are affected by the absence of Vps8, shedding light on at least two trafficking pathways involved in microneme maturation. Knocking-down BDCP revealed a restricted and particular role of this protein in rhoptry and vacuolar compartment biogenesis. Moreover, depletion of BDCP or Vps8 abolishes parasite virulence in vivo. This study identified BDCP as a novel CORVET/HOPS-associated protein, playing specific roles and acting in concert during secretory organelle biogenesis, an essential process for host cell infection. Our results open the hypothesis for a role of BDCP in the vesicular trafficking towards lysosome-related organelles in mammals and yeast.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasma/metabolismo , Compartimento Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Complexos Multiproteicos/genética , Mutação , Biogênese de Organelas , Subunidades Proteicas , Transporte Proteico , Proteômica/métodos , Proteínas de Protozoários/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Int J Parasitol ; 48(7): 493-504, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29596862

RESUMO

Phosphoinositides are the phosphorylated derivatives of the structural membrane phospholipid phosphatidylinositol. Single or combined phosphorylation at the 3, 4 and 5 positions of the inositol ring gives rise to the seven different species of phosphoinositides. All are quantitatively minor components of cellular membranes but have been shown to have important functions in multiple cellular processes. Here we describe our current knowledge of phosphoinositide metabolism and functions in apicomplexan parasites, mainly focusing on Toxoplasma gondii and Plasmodium spp. Even though our understanding is still rudimentary, phosphoinositides have already shown their importance in parasite biology and revealed some very particular and parasite-specific functions. Not surprisingly, there is a strong potential for phosphoinositide synthesis to be exploited for future anti-parasitic drug development.


Assuntos
Apicomplexa/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Metabolismo dos Lipídeos
20.
PLoS One ; 12(12): e0189556, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244879

RESUMO

During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP), a rhoptry protein homologous to High temperature requirement A (HtrA) or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.


Assuntos
Proteínas de Protozoários/fisiologia , Serina Proteases/fisiologia , Toxoplasma/enzimologia , Toxoplasmose/parasitologia , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Processamento de Proteína Pós-Traducional , Proteólise , Toxoplasma/genética , Toxoplasma/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...