Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 142(2): 161-174, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264695

RESUMO

BACKGROUND: The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac ß-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS: We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS: PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but ß-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS: Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Expressão Gênica , Insuficiência Cardíaca/etiologia , Miocárdio/metabolismo , Remodelação Ventricular/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Terapia Genética , Vetores Genéticos/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Testes de Função Cardíaca , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenótipo , Receptores Adrenérgicos beta/metabolismo , Transdução Genética , Remodelação Ventricular/efeitos dos fármacos
2.
J Mol Cell Cardiol ; 133: 57-66, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158360

RESUMO

AIMS: Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to ß-adrenergic receptor (ß-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS: Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective ß-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS: Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or ß-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.


Assuntos
AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Acoplamento Excitação-Contração/genética , Miócitos Cardíacos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Família Multigênica , Miócitos Cardíacos/efeitos dos fármacos , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Receptores Adrenérgicos beta/metabolismo , Suínos
3.
Exp Physiol ; 104(8): 1237-1249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116459

RESUMO

NEW FINDINGS: What is the central question of this study? Can imipramine, an antidepressant agent that is a cationic amphiphilic drug that interferes with the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system, be validated as a new detubulating tool? What is the main finding and its importance? Imipramine was validated as a more efficient and less toxic detubulating agent of cardiomyocytes than formamide. New insights are provided on how PI(4,5)P2 is crucial to maintaining T-tubule attachment to the cell surface and on the cardiotoxic effects of imipramine overdoses. ABSTRACT: Cardiac T-tubules are membrane invaginations essential for excitation-contraction coupling (ECC). Imipramine, like other cationic amphiphilic drugs, interferes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system connected to the cell surface. Our main purpose was to validate imipramine as a new detubulating agent in cardiomyocytes. Staining adult rat ventricular myocytes (ARVMs) with di-4-ANEPPS, we showed that unlike formamide, imipramine induces a complete detubulation with no impact on cell viability. Using the patch-clamp technique, we observed a ∼40% decrease in cell capacitance after imipramine pretreatment and a reduction of ICa,L amplitude by ∼72%. These parameters were not affected in atrial cells, excluding direct side effects of imipramine. ß-Adrenergic receptor (ß-AR) stimulation of the remaining ICa,L with isoproterenol (Iso) was still effective. ECC was investigated in ARVMs loaded with Fura-2 and paced at 1 Hz, allowing simultaneous measurement of the Ca2+ transient (CaT) and sarcomere shortening (SS). Amplitude of both CaT and SS was decreased by imipramine and partially restored by Iso. Furthermore, detubulated cells exhibited Ca2+ homeostasis perturbations. Real-time cAMP variations induced by Iso using a Förster resonance energy transfer biosensor revealed ∼27% decreased cAMP elevation upon ß-AR stimulation. To conclude, we validated a new cardiomyocyte detubulation method using imipramine, which is more efficient and less toxic than formamide. This antidepressant agent induces the hallmark effects of detubulation on ECC and its ß-AR stimulation. Besides, we provide new insights on how an imipramine overdose may affect cardiac function and suggest that PI(4,5)P2 is crucial for maintaining T-tubule structure.


Assuntos
Formamidas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Imipramina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Isoproterenol/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo
4.
Cardiovasc Res ; 114(11): 1499-1511, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733383

RESUMO

Aims: ß1- and ß2-adrenergic receptors (ß-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which ß1- and ß2-ARs regulate nuclear PKA activity in cardiomyocytes. Methods and results: We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective ß1- or ß2-ARs stimulation. Both ß1- and ß2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only ß1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by ß2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by ß1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by ß2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPß partially inhibited nuclear PKA activation upon ß1-AR stimulation, and drastically decreased nuclear PKA activation upon ß2-AR stimulation in the presence of PDE4 inhibition. Conclusions: ß1- and ß2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPß-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon ß2-AR stimulation.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Sinalização do Cálcio , Núcleo Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta 2/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Técnicas Biossensoriais , Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/efeitos dos fármacos , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Citoplasma/enzimologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Ratos Wistar , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Fatores de Tempo
5.
Circ Res ; 122(7): e49-e61, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29467196

RESUMO

RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional , Aldosterona/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Wistar
6.
J Am Soc Echocardiogr ; 30(11): 1138-1147.e4, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28864150

RESUMO

BACKGROUND: Early detection of right ventricular (RV) failure is required to improve the management of patients with congenital heart diseases. The aim of this study was to validate echocardiography for the early detection of overloaded RV dysfunction, compared with hemodynamic and myocyte contractility assessment. METHODS: Using a porcine model reproducing repaired tetralogy of Fallot, RV function was evaluated over 4 months using standard echocardiography and speckle-tracking compared with hemodynamic parameters (conductance catheter). Sarcomere shortening and calcium transients were recorded in RV isolated myocytes. Contractile reserve (ΔEmax) was assessed by ß-adrenergic stimulation in vivo (dobutamine 5 µg/kg) and ex vivo (isoproterenol 100 nM). RESULTS: Six operated animals were compared with four age- and sex-matched controls. In the operated group, hemodynamic RV efficient ejection fraction was significantly decreased (29.7% [26.2%-34%] vs 42.9% [40.7%-48.6%], P < .01), and inotropic responses to dobutamine were attenuated (ΔEmax was 51% vs 193%, P < .05). Echocardiographic measurements of fraction of area change, tricuspid annular plane systolic excursion, tricuspid annular peak systolic velocity (S') and RV free wall longitudinal systolic strain and strain rate were significantly decreased. Strain rate, S', and tricuspid annular plane systolic excursion were correlated with ΔEmax (r = 0.75, r = 0.78, and r = 0.65, respectively, P < .05). These alterations were associated in RV isolated myocytes with the decrease of sarcomere shortening in response to isoproterenol and perturbations of calcium homeostasis assessed by the increase of spontaneous calcium waves. CONCLUSIONS: In this porcine model, both standard and strain echocardiographic parameters detected early impairments of RV function and cardiac reserve, which were associated with cardiomyocyte excitation-contraction coupling alterations.


Assuntos
Diagnóstico Precoce , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Disfunção Ventricular Direita/diagnóstico , Função Ventricular Direita/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Progressão da Doença , Ventrículos do Coração/fisiopatologia , Reprodutibilidade dos Testes , Suínos , Disfunção Ventricular Direita/fisiopatologia
7.
Circ Res ; 120(1): 120-132, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27799254

RESUMO

RATIONALE: Phosphodiesterase 2 is a dual substrate esterase, which has the unique property to be stimulated by cGMP, but primarily hydrolyzes cAMP. Myocardial phosphodiesterase 2 is upregulated in human heart failure, but its role in the heart is unknown. OBJECTIVE: To explore the role of phosphodiesterase 2 in cardiac function, propensity to arrhythmia, and myocardial infarction. METHODS AND RESULTS: Pharmacological inhibition of phosphodiesterase 2 (BAY 60-7550, BAY) led to a significant positive chronotropic effect on top of maximal ß-adrenoceptor activation in healthy mice. Under pathological conditions induced by chronic catecholamine infusions, BAY reversed both the attenuated ß-adrenoceptor-mediated inotropy and chronotropy. Conversely, ECG telemetry in heart-specific phosphodiesterase 2-transgenic (TG) mice showed a marked reduction in resting and in maximal heart rate, whereas cardiac output was completely preserved because of greater cardiac contraction. This well-tolerated phenotype persisted in elderly TG with no indications of cardiac pathology or premature death. During arrhythmia provocation induced by catecholamine injections, TG animals were resistant to triggered ventricular arrhythmias. Accordingly, Ca2+-spark analysis in isolated TG cardiomyocytes revealed remarkably reduced Ca2+ leakage and lower basal phosphorylation levels of Ca2+-cycling proteins including ryanodine receptor type 2. Moreover, TG demonstrated improved cardiac function after myocardial infarction. CONCLUSIONS: Endogenous phosphodiesterase 2 contributes to heart rate regulation. Greater phosphodiesterase 2 abundance protects against arrhythmias and improves contraction force after severe ischemic insult. Activating myocardial phosphodiesterase 2 may, thus, represent a novel intracellular antiadrenergic therapeutic strategy protecting the heart from arrhythmia and contractile dysfunction.


Assuntos
Arritmias Cardíacas/metabolismo , Cardiotônicos/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/biossíntese , Isoproterenol/toxicidade , Contração Miocárdica/fisiologia , Infarto do Miocárdio/metabolismo , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/prevenção & controle , Catecolaminas/toxicidade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Cães , Feminino , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Triazinas/farmacologia
8.
Biol Aujourdhui ; 210(3): 127-138, 2016.
Artigo em Francês | MEDLINE | ID: mdl-27813474

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac function. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP, controlling specific cell functions in response to various neurohormonal stimuli. In the myocardium, the PDE3 and PDE4 families predominate, degrading cAMP and thereby regulating cardiac excitation-contraction coupling. PDE3 inhibitors are positive inotropes and vasodilators in humans, but their use is limited to acute heart failure and intermittent claudication. PDE5 inhibitors, which are used with success to treat erectile dysfunction and pulmonary hypertension, do not seem efficient in heart failure with preserved ejection fraction. There is experimental evidence however that these PDE, as well as other PDE families including PDE1, PDE2 and PDE9, may play important roles in cardiac diseases, such as hypertrophy and heart failure (HF). After a brief presentation of the cyclic nucleotide pathways in cardiac myocytes and the major characteristics of the PDE superfamily, this review will focus on the potential use of PDE inhibitors in HF, and the recent research developments that could lead to a better exploitation of the therapeutic potential of these enzymes in the future.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Coração/fisiologia , Inibidores de Fosfodiesterase/uso terapêutico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Terapia de Alvo Molecular/tendências , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia
9.
J Am Heart Assoc ; 3(3): e000858, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24904016

RESUMO

BACKGROUND: RV and LV have different embryologic, structural, metabolic, and electrophysiologic characteristics, but whether interventricular differences exist in ß-adrenergic (ß-AR) responsiveness is unknown. In this study, we examine whether ß-AR response and signaling differ in right (RV) versus left (LV) ventricles. METHODS AND RESULTS: Sarcomere shortening, Ca(2+) transients, ICa,L and IKs currents were recorded in isolated dog LV and RV midmyocytes. Intracellular [cAMP] and PKA activity were measured by live cell imaging using FRET-based sensors. Isoproterenol increased sarcomere shortening ≈10-fold and Ca(2+)-transient amplitude ≈2-fold in LV midmyocytes (LVMs) versus ≈25-fold and ≈3-fold in RVMs. FRET imaging using targeted Epac2camps sensors revealed no change in subsarcolemmal [cAMP], but a 2-fold higher ß-AR stimulation of cytoplasmic [cAMP] in RVMs versus LVMs. Accordingly, ß-AR regulation of ICa,L and IKs were similar between LVMs and RVMs, whereas cytoplasmic PKA activity was increased in RVMs. Both PDE3 and PDE4 contributed to the ß-AR regulation of cytoplasmic [cAMP], and the difference between LVMs and RVMs was abolished by PDE3 inhibition and attenuated by PDE4 inhibition. Finally LV and RV intracavitary pressures were recorded in anesthetized beagle dogs. A bolus injection of isoproterenol increased RV dP/dtmax≈5-fold versus 3-fold in LV. CONCLUSION: Canine RV and LV differ in their ß-AR response due to intrinsic differences in myocyte ß-AR downstream signaling. Enhanced ß-AR responsiveness of the RV results from higher cAMP elevation in the cytoplasm, due to a decreased degradation by PDE3 and PDE4 in the RV compared to the LV.


Assuntos
Coração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Função Ventricular/fisiologia , Animais , Cálcio/metabolismo , AMP Cíclico/fisiologia , Cães , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Diester Fosfórico Hidrolases , Sarcômeros/fisiologia
10.
Cardiovasc Res ; 102(1): 97-106, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24550350

RESUMO

AIMS: The cAMP-dependent protein kinase (PKA) mediates ß-adrenoceptor (ß-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. METHODS AND RESULTS: Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. ß-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. CONCLUSION: Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to ß-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to ß-AR stimulation.


Assuntos
Núcleo Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/enzimologia , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Cardiotônicos/farmacologia , Núcleo Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Receptores Adrenérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Hum Mol Genet ; 23(5): 1163-74, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24122441

RESUMO

Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Alprostadil/farmacologia , Complexo de Carney/genética , Complexo de Carney/metabolismo , Membrana Celular/metabolismo , Colforsina/farmacologia , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inativação Gênica , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Transporte Proteico , Interferência de RNA , Transdução de Sinais
12.
Cardiovasc Res ; 100(2): 336-46, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23933582

RESUMO

AIMS: Multiple phosphodiesterases (PDEs) hydrolyze cAMP in cardiomyocytes, but the functional significance of this diversity is not well understood. Our goal here was to characterize the involvement of three different PDEs (PDE2-4) in cardiac excitation-contraction coupling (ECC). METHODS AND RESULTS: Sarcomere shortening and Ca(2+) transients were recorded simultaneously in adult rat ventricular myocytes and ECC protein phosphorylation by PKA was determined by western blot analysis. Under basal conditions, selective inhibition of PDE2 or PDE3 induced a small but significant increase in Ca(2+) transients, sarcomere shortening, and troponin I phosphorylation, whereas PDE4 inhibition had no effect. PDE3 inhibition, but not PDE2 or PDE4, increased phospholamban phosphorylation. Inhibition of either PDE2, 3, or 4 increased phosphorylation of the myosin-binding protein C, but neither had an effect on L-type Ca(2+) channel or ryanodine receptor phosphorylation. Dual inhibition of PDE2 and PDE3 or PDE2 and PDE4 further increased ECC compared with individual PDE inhibition, but the most potent combination was obtained when inhibiting simultaneously PDE3 and PDE4. This combination also induced a synergistic induction of ECC protein phosphorylation. Submaximal ß-adrenergic receptor stimulation increased ECC, and this effect was potentiated by individual PDE inhibition with the rank order of potency PDE4 = PDE3 > PDE2. Identical results were obtained on ECC protein phosphorylation. CONCLUSION: Our results demonstrate that PDE2, PDE3, and PDE4 differentially regulate ECC in adult cardiomyocytes. PDE2 and PDE3 play a more prominent role than PDE4 in regulating basal cardiac contraction and Ca(2+) transients. However, PDE4 becomes determinant when cAMP levels are elevated, for instance, upon ß-adrenergic stimulation or PDE3 inhibition.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , Acoplamento Excitação-Contração/fisiologia , 3',5'-AMP Cíclico Fosfodiesterases/classificação , Animais , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Masculino , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Ratos , Ratos Wistar
13.
J Am Coll Cardiol ; 62(17): 1596-606, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23810893

RESUMO

OBJECTIVES: This study investigated whether myocardial phosphodiesterase-2 (PDE2) is altered in heart failure (HF) and determined PDE2-mediated effects on beta-adrenergic receptor (ß-AR) signaling in healthy and diseased cardiomyocytes. BACKGROUND: Diminished cyclic adenosine monophosphate (cAMP) and augmented cyclic guanosine monophosphate (cGMP) signaling is characteristic for failing hearts. Among the PDE superfamily, PDE2 has the unique property of being able to be stimulated by cGMP, thus leading to a remarkable increase in cAMP hydrolysis mediating a negative cross talk between cGMP and cAMP signaling. However, the role of PDE2 in HF is poorly understood. METHODS: Immunoblotting, radioenzymatic- and fluorescence resonance energy transfer-based assays, video edge detection, epifluorescence microscopy, and L-type Ca2(+) current measurements were performed in myocardial tissues and/or isolated cardiomyocytes from human and/or experimental HF, respectively. RESULTS: Myocardial PDE2 expression and activity were ~2-fold higher in advanced human HF. Chronic ß-AR stimulation via catecholamine infusions in rats enhanced PDE2 expression ~2-fold and cAMP hydrolytic activity ~4-fold, which correlated with blunted cardiac ß-AR responsiveness. In diseased cardiomyocytes, higher PDE2 activity could be further enhanced by stimulation of cGMP synthesis via nitric oxide donors, whereas specific PDE2 inhibition partially restored ß-AR responsiveness. Accordingly, PDE2 overexpression in healthy cardiomyocytes reduced the rise in cAMP levels and L-type Ca2(+) current amplitude, and abolished the inotropic effect following acute ß-AR stimulation, without affecting basal contractility. Importantly, PDE2-overexpressing cardiomyocytes showed marked protection from norepinephrine-induced hypertrophic responses. CONCLUSIONS: PDE2 is markedly up-regulated in failing hearts and desensitizes against acute ß-AR stimulation. This may constitute an important defense mechanism during cardiac stress, for example, by antagonizing excessive ß-AR drive. Thus, activating myocardial PDE2 may represent a novel intracellular antiadrenergic therapeutic strategy in HF.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/biossíntese , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta/metabolismo , Regulação para Cima/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Catecolaminas/farmacologia , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Cães , Feminino , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Adulto Jovem
14.
Circ Res ; 102(9): 1091-100, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18369156

RESUMO

Steady-state activation of cardiac beta-adrenergic receptors leads to an intracellular compartmentation of cAMP resulting from localized cyclic nucleotide phosphodiesterase (PDE) activity. To evaluate the time course of the cAMP changes in the different compartments, brief (15 seconds) pulses of isoprenaline (100 nmol/L) were applied to adult rat ventricular myocytes (ARVMs) while monitoring cAMP changes beneath the membrane using engineered cyclic nucleotide-gated channels and within the cytosol with the fluorescence resonance energy transfer-based sensor, Epac2-camps. cAMP kinetics in the two compartments were compared to the time course of the L-type Ca(2+) channel current (I(Ca,L)) amplitude. The onset and recovery of cAMP transients were, respectively, 30% and 50% faster at the plasma membrane than in the cytosol, in agreement with a rapid production and degradation of the second messenger at the plasma membrane and a restricted diffusion of cAMP to the cytosol. I(Ca,L) amplitude increased twice slower than cAMP at the membrane, and the current remained elevated for approximately 5 minutes after cAMP had already returned to basal level, indicating that cAMP changes are not rate-limiting in channel phosphorylation/dephosphorylation. Inhibition of PDE4 (with 10 micromol/L Ro 20-1724) increased the amplitude and dramatically slowed down the onset and recovery of cAMP signals, whereas PDE3 blockade (with 1 micromol/L cilostamide) had a minor effect only on subsarcolemmal cAMP. However, when both PDE3 and PDE4 were inhibited, or when all PDEs were blocked using 3-isobutyl-l-methylxanthine (300 micromol/L), cAMP signals and I(Ca,L) declined with a time constant >10 minutes. cAMP-dependent protein kinase inhibition with protein kinase inhibitor produced a similar effect as a partial inhibition of PDE4 on the cytosolic cAMP transient. Consistently, cAMP-PDE assay on ARVMs briefly (15 seconds) exposed to isoprenaline showed a pronounced (up to approximately 50%) dose-dependent increase in total PDE activity, which was mainly attributable to activation of PDE4. These results reveal temporally distinct beta-adrenergic receptor cAMP compartments in ARVMs and shed new light on the intricate roles of PDE3 and PDE4.


Assuntos
Canais de Cálcio Tipo L/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , 4-(3-Butoxi-4-metoxibenzil)-2-imidazolidinona/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Técnicas Biossensoriais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Citosol/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ventrículos do Coração/metabolismo , Isoproterenol/farmacologia , Cinética , Masculino , Potenciais da Membrana , Microscopia de Fluorescência/métodos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Inibidores da Fosfodiesterase 3 , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Quinolonas/farmacologia , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/efeitos dos fármacos , Sarcolema/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
15.
J Physiol ; 565(Pt 3): 951-64, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15831533

RESUMO

The creatine kinase system (CK) is important for energy delivery in skeletal and cardiac muscles. The two main isoforms of this enzyme, cytosolic MM-CK and mitochondrial mi-CK, are expressed in a developmental and muscle-type specific manner. Mice deficient in one or both of these isoforms are viable and fertile but exhibit profound functional, metabolic and structural muscle remodelling that primarily affects fast skeletal muscles, which show an increased contribution of oxidative metabolism to contractile function. However, the consequences of these alterations in terms of physical capabilities have not yet been characterized. Consequently, we compared the voluntary exercise capacity of 9-month-old male wild-type (WT), M-CK knockout (M-CK(-/-)), and M-CK and mi-CK double knockout (CK(-/-)) mice, using cages equipped with running wheels. Exercise performance, calculated by total distance covered and by work done during the training period, was more than 10-fold lower in CK(-/-) mice than controls, with M-CK(-/-) mice exhibiting intermediate performance. Similarly, the mean distance run per activation was lower in M-CK(-/-) and even lower in CK(-/-) mice. However, the maximal running speed (V(max)) was lower only for CK(-/-) mice. This was accompanied by severe skeletal muscle mass decrease in CK(-/-) mice, with signs of histological damage that included enlarged interstitial areas, aggregations of mononuclear cells in the interstitium, heterogeneity of myofibre size and the presence of very small fibres. No overt sign of cardiac dysfunction was observed by magnetic resonance imaging during dobutamine stimulation. These results show that metabolic failure induced by CK deficiency profoundly affects the ability of mice to engage in chronic bouts of endurance running exercise and that this decrease in performance is also associated with muscle wasting.


Assuntos
Creatina Quinase/genética , Músculo Esquelético/enzimologia , Atrofia Muscular/fisiopatologia , Esforço Físico/fisiologia , Corrida/fisiologia , Animais , Peso Corporal , Creatina Quinase/deficiência , Creatina Quinase Forma MM , Creatina Quinase Mitocondrial , Expressão Gênica , Isoenzimas/deficiência , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Contração Miocárdica , Miocárdio/enzimologia , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Função Ventricular Esquerda , Volição
16.
Am J Physiol Heart Circ Physiol ; 287(2): H914-20, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277206

RESUMO

One of the main factors that control vasoreactivity and angiogenesis is nitric oxide produced by endothelial nitric oxide synthase (eNOS). We recently showed that knocking out eNOS induces an important reduction of mitochondrial oxidative capacity in slow-twitch skeletal muscle. Here we investigated eNOS's role in physical activity and contribution to adaptation of muscle energy metabolism to exercise conditions. Physical capacity of mice null for the eNOS isoform (eNOS-/-) was estimated for 8 wk with a voluntary wheel-running protocol. In parallel, we studied energy metabolism enzyme profiles and their response to voluntary exercise in cardiac and slow-twitch soleus (Sol) and fast-twitch gastrocnemius (Gast) skeletal muscles. Weekly averaged running distance was two times lower for eNOS-/- (4.09 +/- 0.42 km/day) than for wild-type (WT; 7.74 +/- 0.42 km/day; P < 0.01) mice. Average maximal speed of running was also lower in eNOS-/- (17.2 +/- 1.4 m/min) than WT (21.2 +/- 0.9 m/min; P < 0.01) mice. Voluntary exercise influenced adaptation to exercise specifically in Sol muscle. Physical activity significantly increased Sol weight by 22% (P < 0.05) in WT but not eNOS-/- mice. WT Sol muscle did not change its metabolic profile in response to exercise, in contrast to eNOS-/- muscle, in which physical activity decreased cytochrome-c oxidase (COX; -36%; P < 0.05), citrate synthase (-37%; P < 0.06), and creatine kinase (-24%, P < 0.01) activities. Voluntary exercise did not change energy enzyme profile in heart (except for 39% increase in COX activity in WT) or Gast muscle. These results suggest that eNOS is necessary for maintaining a suitable physical capacity and that when eNOS is downregulated, even moderate exercise could worsen energy metabolism specifically in oxidative skeletal muscle.


Assuntos
Atividade Motora/fisiologia , Óxido Nítrico Sintase/fisiologia , Adaptação Fisiológica , Animais , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase/deficiência , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Tamanho do Órgão , Resistência Física
17.
Cardiovasc Res ; 56(2): 260-8, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12393096

RESUMO

OBJECTIVE: Mitochondrial function and metabolic profile of slow and fast skeletal muscles and cardiac muscle are altered in chronic heart failure (CHF), suggesting a generalized metabolic myopathy in this disease. The aim of this study was to investigate the potential beneficial effects of voluntary activity on cardiac and skeletal muscle energetics in heart failure. METHODS: Heart failure was induced in rats by aortic stenosis. Four months after surgery, part of sham and CHF animals were randomly assigned to activity cages equipped with running wheels for 8 weeks or kept sedentary. Mitochondrial capacity and regulation were measured using saponin skinned fibers in left ventricle, slow and fast skeletal muscles, and metabolic and myosin profiles were established. RESULTS: Despite four times lower performances of CHF rats, alterations in metabolic and myosin parameters (oxidative capacity, mitochondrial enzymes, cytosolic and mitochondrial creatine kinase, myosin heavy chains) observed in all muscles of CHF animals were almost fully restored in soleus muscle though unchanged in heart and fast skeletal muscles. CONCLUSIONS: These results show the powerful beneficial effect of physical activity specifically on active slow oxidative skeletal muscle in CHF, without the worsening of cardiac muscle metabolism.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Esforço Físico/fisiologia , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...